Level Translators／Buffers

DH0034／DH0034C high speed dual level translator

general description

The DH0034／DH0034C is a high speed level trans－ lator suitable for interfacing to MOS or junction FET analog switches．It may also be used as a universal logic level shifter capable of accepting TTL／DTL input levels and shifting to CML，MOS， or SLT levels．

features

－Fast switching， $\mathrm{t}_{\mathrm{pdo}}$ ：typically $15 \mathrm{~ns} ; \mathrm{t}_{\mathrm{pd} 1}$ ： typically 35 ns
－Large output voltage range：25V
－Input is TTL／DTL compatible
－Low output leakage：typically $0.1 \mu \mathrm{~A}$
－High output currents：up to $\pm 100 \mathrm{~mA}$

schematic and connection diagrams

Metal Can Package

TOP VIEW
Order Number DH0034H or DH0034CH See Package 12

Dual－in－Line Package

typical applications

5 MHz Analog Switch

TTL to IBM（SLT）Logic Levels

absolute maximum ratings

Vcc Supply Voltage	7.0 V
Negative Supply Voltage	-30 V
Positive Supply Voltage	+25 V
Differential Supply Voltage	25 V
Maximum Output Current	100 mA
Input Voltage	+5.5 V
Operating Temperature Range:	DH0034
	DH0034C

electrical characteristics (See Notes $1 \& 2$)

PARAMETER	CONDITIONS	DH0034			DH0034C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Logical "1" Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V} \end{aligned}$	2.0	,		2.0			V
Logical " 0 " Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V} \end{aligned}$			0.8			0.8	v
Logical "1" Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.4 \mathrm{~V} \end{aligned}$			40			40	$\mu \mathrm{A}$
Logical " 1 " Input Current	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V} \end{aligned}$			1.0			1.0	mA
Logical "0" Input Current	$\begin{aligned} & V_{c c}=5.5 \mathrm{~V}, V_{\text {IN }}=0.4 \mathrm{~V} \\ & V_{c c}=5.25 \mathrm{~V}, V_{\text {IN }}=0.4 \mathrm{~V} \end{aligned}$			1.6			1.6	mA
Power Supply Current Logic " 0 "	$\begin{aligned} & (\text { Note 3) } \\ & V_{c c}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=4.5 \mathrm{~V} \end{aligned}$		30	38		30	38	mA
Power Supply Current Logic " 1 "	(Note 3) $\begin{aligned} & V_{c \mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \end{aligned}$		37	48		37	48	mA
Logical "0" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=50 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & v^{-}+.50 \\ & v^{-}+.3 \end{aligned}$	$\begin{aligned} & v^{-}+.75 \\ & v^{-}+.50 \end{aligned}$		$\begin{aligned} & v^{-}+.50 \\ & v^{-}+.3 \end{aligned}$	$\begin{aligned} & \mathrm{v}^{-}+.80 \\ & \mathrm{v}^{-}+.65 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V} \\ & \mathrm{~V}^{+} \cdot \mathrm{V}^{-}=25 \mathrm{~V} \end{aligned}$		0.1	5		0.1	5	$\mu \mathrm{A}$
Transition Time to Logical " 0 "	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{3}=0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & V^{-}=-25 \mathrm{~V}, R_{\mathrm{L}}=510 \Omega \end{aligned}$		15	25		15	35	ns
Transition Time to Logical " 1 "	$\begin{aligned} & V_{\text {CC }}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \\ & V^{-}=-25 \mathrm{~V}, R_{L}=510 \Omega \end{aligned}$		35	60		35	65	ns

Note 1: These specifications apply over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the DH0034 and $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the DH0034C with a 510 ohm resistor connected between output and ground, and V^{-}connected to -25 V , unless otherwise specified.
Note 2: All typical values are for $\mathrm{T}_{A}=\mathbf{2 5}$. .
Note 3: Current, measured is total drawn from $V_{\text {CC }}$ supply.

theory of operation

When both inputs of the DH0034 are raised to logic＂ 1 ＂，the input AND gate is turned＂on＂ allowing Q1＇s emitter to become forward biased． Q1 provides a level shift and constant output cur－ rent．The collector current is essentially the same as the emitter which is given by $\frac{V_{C C}-V_{B E}}{R 1}$ Approximately 7.0 mA flows out of Q 1 ＇s col－ lector．

applications information

1．Paralleling the Outputs

The outputs of the DH0034 may be paralleled to increase output drive capability or to accomplish the＂wire OR＂．In order to prevent current hog－ ging by one output transistor or the other，resis－ tors of 2 ohms $/ 100 \mathrm{~mA}$ value should be inserted between the emitters of the output transistors and the minus supply．

2．Recommended Output Voltage Swing

The graph shows boundary conditions which govern proper operation of the DH0034．The range of operation for the negative supply is shown on the X axis and must be between -3 V and -25 V ．The allowable range for the positive supply is governed by the value chosen for $\mathrm{V}^{-} . \mathrm{V}^{+}$ may be selected by drawing a vertical line through the selected value for V^{-}and terminated by the

About 2 mA of Q1＇s collector current is drawn off by pull down resistor，R2．The balance， 5 mA ，is available as base drive to Q 2 and to charge its associated Miller capacitance．The output is pulled to within a $\mathrm{V}_{\text {SAT }}$ of V^{-}．When either（or both） input to the DH0034 is lowered to logic＂ 0 ，＂the AND gate output drops to 0.2 V turning Q 1 off． Deprived of base drive Q 2 rapidly turns off causing the output to rise to the V_{3} supply voltage．Since O2＇s emitter operates between 0.6 V and 0.2 V ，the speed of the DH0034 is greatly enhanced．
boundaries of the operating region．For example，a value of V^{-}equal to -6 V would dictate values of

V^{+}between -5 V and +19 V ．In general，it is de－ sirable to maintain at least 5 V difference between the supplies．

