

Absolute Maximum Ratings (Note 1)	Continuous Pow	600 mW
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.	Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)($ Note 3)	
	$\mathrm{T}_{\text {Jmax }}$ (Note 3)	$150^{\circ} \mathrm{C}$
	θ_{JA} (Note 3)	$210^{\circ} \mathrm{C} / \mathrm{W}$
Supply Voltage (V+ to GND, or GND to OUT) 5.8V	Operating Junction	-40° to $85^{\circ} \mathrm{C}$
SD (GND - 0.3V) to ($\mathrm{V}+++^{\text {+ }}$	Temperature Range	
0.3 V)	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
V+ and OUT Continuous Output Current 50 mA	Lead Temp. (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
Output Short-Circuit Duration to GND (Note 2) 1 sec .	ESD Rating	2 kV

Electrical Characteristics

Limits in standard typeface are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, and limits in boldface type apply over the full operating temperature range. Unless otherwise specified: $\mathrm{V}+=5 \mathrm{~V}, \mathrm{C}_{1}=\mathrm{C}_{2}=3.3 \mu \mathrm{~F}$. (Note 4)

Symbol	Parameter	Condition	Min	Typ	Max	Units
V+	Supply Voltage		2.5		5.5	V
I_{Q}	Supply Current	No Load		650	1250	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SD }}$	Shutdown Supply Current			1		$\mu \mathrm{A}$
$\mathrm{V}_{\text {SD }}$	Shutdown Pin Input Voltage	Shutdown Mode	$\begin{gathered} 2.0 \\ (\text { Note 5) } \end{gathered}$			V
		Normal Operation			$\begin{gathered} 0.8 \\ \text { (Note 6) } \\ \hline \end{gathered}$	
I_{L}	Output Current		40			mA
$\mathrm{R}_{\text {SW }}$	Sum of the $R_{d s(o n)}$ of the four internal MOSFET switches	$\mathrm{I}_{\mathrm{L}}=40 \mathrm{~mA}$		3.5	8	Ω
$\mathrm{R}_{\text {OUT }}$	Output Resistance (Note 7)	$\mathrm{I}_{\mathrm{L}}=40 \mathrm{~mA}$		12	25	Ω
$\mathrm{f}_{\text {Osc }}$	Oscillator Frequency	(Note 8)	80	160		kHz
$\mathrm{f}_{\text {Sw }}$	Switching Frequency	(Note 8)	40	80		kHz
$\mathrm{P}_{\text {EFF }}$	Power Efficiency	R_{L} (1.0k) between GND and OUT	86	93		\%
		$\mathrm{I}_{\mathrm{L}}=40 \mathrm{~mA}$ to GND		90		
$\mathrm{V}_{\text {OEFF }}$	Voltage Conversion Efficiency	No Load	99	99.96		\%

Note 1: Absolute maximum ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions
Note 2: OUT may be shorted to GND for one second without damage. However, shorting OUT to V+ may damage the device and should be avoided. Also, for temperatures above $85^{\circ} \mathrm{C}$, OUT must not be shorted to GND or V_{+}, or device may be damaged.
Note 3: The maximum allowable power dissipation is calculated by using $P_{D M a x}=\left(T_{J M a x}-T_{A}\right) / \theta_{J A}$, where $T_{J M a x}$ is the maximum junction temperature, T_{A} is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance of the specified package.
Note 4: In the test circuit, capacitors C_{1} and C_{2} are $3.3 \mu \mathrm{~F}, 0.3 \Omega$ maximum ESR capacitors. Capacitors with higher ESR will increase output resistance, reduce output voltage and efficiency
Note 5: The minimum input high for the shutdown pin equals 40% of V_{+}
Note 6: The maximum input low of the shutdown pin equals 20% of V_{+}.
Note 7: Specified output resistance includes internal switch resistance and capacitor ESR. See the details in the application information for positive voltage doubler. Note 8: The output switches operate at one half of the oscillator frequency, $\mathrm{f}_{\mathrm{OSC}}=2 \mathrm{f}_{\mathrm{SW}}$.

Test Circuit

FIGURE 1. LM2665 Test Circuit
Typical Performance Characteristics (Circuit of Figure $1, \mathrm{~V}_{+}=5 \mathrm{~V}$ unless otherwise specified)

Supply Current vs

 Supply Voltage

Supply Current vs
Temperature

Output Source
Resistance vs Supply
Voltage

Output Source
Resistance vs Temperature

Typical Performance Characteristics (Circuit of Figure 1, $\mathrm{V}_{+}=5 \mathrm{~V}$ unless otherwise
specified) (Continued)

Output Voltage Drop vs Load Current

Oscillator Frequency vs Supply Voltage

Shutdown Supply

Current vs
Temperature

Efficiency v
Load Current

Oscillator Frequency vs
Temperature

Connection Diagram

6-Lead SOT (M6)

Top View With Package Marking
Ordering Information

Order Number	Package Number	Package Marking	Supplied as
LM2665M6	MA06A	SO4A (Note 9)	Tape and Reel (1000 units/rail)
LM2665M6X	MA06A	SO4A (Note 9)	Tape and Reel (3000 units/rail)

Note 9: The first letter " S " identifies the part as a switched capacitor converter. The next two numbers are the device number. The fourth letter " A " indicates the grade. Only one grade is available. Larger quantity reels are available upon request.

Pin Description

Pin	Name	Function	
		Voltage Doubler	Voltage Split
1	V+	Power supply positive voltage input.	Positive voltage output.
2	GND	Power supply ground input	Same as doubler
3	CAP-	Connect this pin to the negative terminal of the charge-pump capacitor	Shutdown control pin, tie this pin to ground in normal operation.
4	SD as doubler.		
5	OUT	Positive voltage output. CAP+	Connect this pin to the positive terminal of the charge-pump capacitor.
6		Same as doubler	

Circuit Description

The LM2665 contains four large CMOS switches which are switched in a sequence to double the input supply voltage. Energy transfer and storage are provided by external capacitors. Figure 2 illustrates the voltage conversion scheme. When S_{2} and S_{4} are closed, C_{1} charges to the supply voltage V_{+}. During this time interval, switches S_{1} and S_{3} are open. In the next time interval, S_{2} and S_{4} are open; at the same time, S_{1} and S_{3} are closed, the sum of the input voltage $\mathrm{V}+$ and the voltage across C_{1} gives the $2 \mathrm{~V}+$ output voltage when there is no load. The output voltage drop when a load is added is determined by the parasitic resistance (R_{d} s(on) of the MOSFET switches and the ESR of the capacitors) and the charge transfer loss between capacitors. Details will be discussed in the following application information section.

FIGURE 2. Voltage Doubling Principle

Application Information

Positive Voltage Doubler

The main application of the LM2665 is to double the input voltage. The range of the input supply voltage is 2.5 V to 5.5 V .

The output characteristics of this circuit can be approximated by an ideal voltage source in series with a resistance. The

Application Information (Continued)

voltage source equals $2 \mathrm{~V}+$. The output resistance $\mathrm{R}_{\text {out }}$ is a function of the ON resistance of the internal MOSFET switches, the oscillator frequency, the capacitance and ESR of C_{1} and C_{2}. Since the switching current charging and discharging C_{1} is approximately twice as the output current, the effect of the ESR of the pumping capacitor C_{1} will be multiplied by four in the output resistance. The output capacitor C_{2} is charging and discharging at a current approximately equal to the output current, therefore, its ESR only counts once in the output resistance. A good approximation of $\mathrm{R}_{\text {ou }}$ is:

$$
R_{O U T} \cong 2 R_{S W}+\frac{2}{f_{O S C} \times C_{1}}+4 E S R_{C 1}+E S R_{C 2}
$$

where $R_{S w}$ is the sum of the ON resistance of the internal MOSFET switches shown in Figure 2.
The peak-to-peak output voltage ripple is determined by the oscillator frequency, the capacitance and ESR of the output capacitor C_{2} :

$$
V_{\mathrm{RIPPLE}}=\frac{\mathrm{I}_{\mathrm{L}}}{f_{O S C} \times C_{2}}+2 \times \mathrm{I}_{\mathrm{L}} \times E \mathrm{ES}_{\mathrm{C} 2}
$$

High capacitance, low ESR capacitors can reduce both the output resistance and the voltage ripple.
The Schottky diode D_{1} is only needed for start-up. The internal oscillator circuit uses the OUT pin and the GND pin. Voltage across OUT and GND must be larger than 1.8 V to insure the operation of the oscillator. During start-up, D_{1} is used to charge up the voltage at the OUT pin to start the oscillator; also, it protects the device from turning-on its own parasitic diode and potentially latching-up. Therefore, the Schottky diode D_{1} should have enough current carrying capability to charge the output capacitor at start-up, as well as a low forward voltage to prevent the internal parasitic diode from turning-on. A Schottky diode like 1N5817 can be used for most applications. If the input voltage ramp is less than 10 V ms , a smaller Schottky diode like MBR0520LT1 can be used to reduce the circuit size.

Split \mathbf{V}_{+}in Half

Another interesting application shown in the Basic Application Circuits is using the LM2665 as a precision voltage divider. . This circuit can be derived from the voltage doubler by switching the input and output connections. In the voltage divider, the input voltage applies across the OUT pin and the GND pin (which are the power rails for the internal oscillator), therefore no start-up diode is needed. Also, since the off-voltage across each switch equals $\mathrm{V}_{\text {in }} / 2$, the input voltage can be raised to +11 V .

Shutdown Mode

A shutdown (SD) pin is available to disable the device and reduce the quiescent current to $1 \mu \mathrm{~A}$. In normal operating mode, the SD pin is connected to ground. The device can be brought into the shutdown mode by applying to the SD pin a voltage greater than 40% of the $\mathrm{V}+$ pin voltage.

Capacitor Selection

As discussed in the Positive Voltage Doubler section, the output resistance and ripple voltage are dependent on the capacitance and ESR values of the external capacitors. The output voltage drop is the load current times the output resistance, and the power efficiency is

$$
\eta=\frac{P_{\text {OUT }}}{P_{I N}}=\frac{I_{L}{ }^{2} R_{L}}{I_{L}{ }^{2} R_{L}+I_{L}{ }^{2} R_{O U T}+I_{Q}(V+)}
$$

Where $I_{Q}\left(V_{+}\right)$is the quiescent power loss of the IC device, and $I_{L}{ }^{2} R_{\text {out }}$ is the conversion loss associated with the switch on-resistance, the two external capacitors and their ESRs.
The selection of capacitors is based on the specifications of the dropout voltage (which equals $\mathrm{I}_{\text {out }} \mathrm{R}_{\text {out }}$), the output voltage ripple, and the converter efficiency. Low ESR capacitors (Table 1) are recommended to maximize efficiency, reduce the output voltage drop and voltage ripple.

Low ESR Capacitor Manufacturers

Manufacturer	Phone	Capacitor Type
Nichicon Corp.	$(708)-843-7500$	PL \& PF series, through-hole aluminum electrolytic
AVX Corp.	$(803)-448-9411$	TPS series, surface-mount tantalum
Sprague	$(207)-324-4140$	593D, 594D, 595D series, surface-mount tantalum
Sanyo	$(619)-661-6835$	OS-CON series, through-hole aluminum electrolytic
Murata	$(800)-831-9172$	Ceramic chip capacitors
Taiyo Yuden	$(800)-348-2496$	Ceramic chip capacitors
Tokin	$(408)-432-8020$	Ceramic chip capacitors

Other Applications

Paralleling Devices

Any number of LM2665s can be paralleled to reduce the output resistance. Each device must have its own pumping capacitor C_{1}, while only one output capacitor $\mathrm{C}_{\text {out }}$ is needed as shown in Figure 3. The composite output resistance is:

$$
R_{\text {OUT }}=\frac{R_{\text {OUT }} \text { of each LM2665 }}{\text { Number of Devices }}
$$

Other Applications (Continued)

FIGURE 3. Lowering Output Resistance by Paralleling Devices

Cascading Devices

Cascading the LM2665s is an easy way to produce a greater voltage (A two-stage cascade circuit is shown in Figure 4).
The effective output resistance is equal to the weighted sum of each individual device:

$$
R_{\text {out }}=1.5 R_{\text {out_1 }}+R_{\text {out_2 }}
$$

Note that, the increasing of the number of cascading stages is pracitically limited since it significantly reduces the efficiency, increases the output resistance and output voltage ripple.

FIGURE 4. Increasing Output Voltage by Cascading Devices

Regulating $\mathrm{V}_{\text {Out }}$

It is possible to regulate the output of the LM2665 by use of a low dropout regulator (such as LP2980-5.0). The whole converter is depicted in Figure 5.
A different output voltage is possible by use of LP2980-3.3, LP2980-3.0, or LP2980-adj.

FIGURE 5. Generate a Regulated +5 V from +3 V Input Voltage

Physical Dimensions inches (millimeters) unless otherwise noted

For Order Numbers, refer to the table in the "Ordering Information" section of this document.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT devices or systems without the express written approval of the president and general COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	Response Group	Tel: 81-3-5639-7560
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 8585	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 7832	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 9358		
www.national.com	Italiano Tel: +49 (0) 1 80-534 1680		

