S-19115xxxA Series www.ablic.com AUTOMOTIVE, 125°C OPERATION, 36 V, VOLTAGE DETECTOR FOR OVERVOLTAGE DETECTION WITH DELAY FUNCTION (EXTERNAL DELAY TIME SETTING) © ABLIC Inc., 2021 Rev.1.1_00 This IC, developed using CMOS technology, is a high-accuracy voltage detector. The detection voltage and release voltage are fixed internally with an accuracy of $\pm 1.5\%$. Apart from the power supply pin, the detection voltage input pin (SENSE pin) is also prepared, so the output is stable even if the SENSE pin voltage (V_{SENSE}) falls to 0 V. The SENSE pin also has a built-in reverse connection protection circuit that reduces current in the SENSE pin during a reverse connection. The release signal can be delayed by setting a capacitor externally, and the release delay time accuracy is $\pm 15\%$ (C_D = 3.3 nF). The output form is Nch open-drain output. ABLIC Inc. offers FIT rate calculated based on actual customer usage conditions in order to support customer functional safety design. For more information regarding our FIT rate calculation, contact our sales representatives. Caution This product can be used in vehicle equipment and in-vehicle equipment. Before using the product for these purposes, it is imperative to contact our sales representatives. #### ■ Features • Detection voltage: 16.0 V to 18.0 V (0.1 V step) • Detection voltage accuracy: ±1.5% • Hysteresis width selectable from "Available" / "Unavailable": "Available": 5.0%, 10.0% "Unavailable": 0% • Release delay time accuracy: $\pm 15\%$ (C_D = 3.3 nF) • Current consumption: 0.6 μA typ. Output form: Nch open-drain output • Built-in reverse connection protection circuit: Reduces current in the SENSE pin during a reverse connection. • Operation voltage range: 3.0 V to 36.0 V • Operation temperature range: Ta = -40°C to +125°C - Lead-free (Sn 100%), halogen-free - Withstand 45 V load dump - AEC-Q100 qualified*1 ## Applications - Automotive battery voltage detection - For automotive use (engine, transmission, suspension, ABS, related-devices for EV / HEV / PHEV, etc.) ### ■ Packages - HTMSOP-8 - HSNT-8(2030) - SOT-23-5 ^{*1.} Contact our sales representatives for details. ## **■** Block Diagrams ## 1. S-19115 Series L type *1. Parasitic diode Figure 1 | Product Type | Hysteresis Width | Output Form | Output Logic | |--------------|------------------|-----------------------|--------------| | L type | 0% | Nch open-drain output | Active "L" | ## 2. S-19115 Series M / N type *1. Parasitic diode Figure 2 | Product Type Hysteresis Width | | Output Form | Output Logic | | |-------------------------------|-------|-----------------------|--------------|--| | M type | 5.0% | Nch open-drain output | Active "L" | | | N type | 10.0% | Nch open-drain output | Active "L" | | ## ■ AEC-Q100 Qualified This IC supports AEC-Q100 for operation temperature grade 1. Contact our sales representatives for details of AEC-Q100 reliability specification. ## **■ Product Name Structure** ## 1. Product name - *1. Refer to the tape drawing. - *2. Refer to **Table 1** for the overvoltage detection voltage. - *3. Refer to "2. Function list of product types". Table 1 | Overvoltage
Detection Voltage | Symbol | |----------------------------------|--------| | 16.0 V | G0 | | 16.1 V | G1 | | 16.2 V | G2 | | 16.3 V | G3 | | 16.4 V | G4 | | 16.5 V | G5 | | 16.6 V | G6 | | Symbol | |--------| | G7 | | G8 | | G9 | | H0 | | H1 | | H2 | | Н3 | | | | Overvoltage
Detection Voltage | Symbol | |----------------------------------|--------| | 17.4 V | H4 | | 17.5 V | H5 | | 17.6 V | H6 | | 17.7 V | H7 | | 17.8 V | H8 | | 17.9 V | H9 | | 18.0 V | J0 | ## 2. Function list of product types Table 2 | Product Type | Product Type Hysteresis Width | | Output Logic | | |--------------|-------------------------------|-----------------------|--------------|--| | L type | 0% | Nch open-drain output | Active "L" | | | M type | 5.0% | Nch open-drain output | Active "L" | | | N type | 10.0% | Nch open-drain output | Active "L" | | ## 3. Packages Table 3 Package Drawing Codes | Package Name | Dimension | Tape | Reel | Land | |--------------|--------------|--------------|--------------|--------------| | HTMSOP-8 | FP008-A-P-SD | FP008-A-C-SD | FP008-A-R-SD | FP008-A-L-SD | | HSNT-8(2030) | PP008-A-P-SD | PP008-A-C-SD | PP008-A-R-SD | PP008-A-L-SD | | SOT-23-5 | MP005-A-P-SD | MP005-A-C-SD | MP005-A-R-SD | _ | ## ■ Pin Configurations #### 1. HTMSOP-8 | Table 4 | | | | | | |---------|--------|--|--|--|--| | Pin No. | Symbol | Description | | | | | 1 | NC*2 | No connection | | | | | 2 | VDD | Voltage input pin | | | | | 3 | NC*2 | No connection | | | | | 4 | SENSE | Detection voltage input pin | | | | | 5 | CD*3 | Connection pin for release delay time adjustment capacitor | | | | | 6 | VSS | GND pin | | | | | 7 | OUT | Voltage detection output pin | | | | | 8 | NC*2 | No connection | | | | Figure 3 - ***1.** Connect the heat sink of backside at shadowed area to the board, and set electric potential GND. However, do not use it as the function of electrode. - *2. The NC pin is electrically open. The NC pin can be connected to the VDD pin or the VSS pin. ***3.** Connect a capacitor between the CD pin and the VSS pin. The release delay time can be adjusted according to the capacitance. Moreover, the CD pin is available even when it is open. ## 2. HSNT-8(2030) Bottom view Top view Table 5 | Pin No. | Symbol | Description | |---------|--------|--| | 1 | NC*2 | No connection | | 2 | VDD | Voltage input pin | | 3 | NC*2 | No connection | | 4 | SENSE | Detection voltage input pin | | 5 | CD*3 | Connection pin for release delay time adjustment capacitor | | 6 | VSS | GND pin | | 7 | OUT | Voltage detection output pin | | 8 | NC*2 | No connection | Figure 4 - ***1.** Connect the heat sink of backside at shadowed area to the board, and set electric potential GND. However, do not use it as the function of electrode. - *2. The NC pin is electrically open. The NC pin can be connected to the VDD pin or the VSS pin. ***3.** Connect a capacitor between the CD pin and the VSS pin. The release delay time can be adjusted according to the capacitance. Moreover, the CD pin is available even when it is open. #### 3. SOT-23-5 Pin No. Symbol Description 1 OUT Overvoltage detection output pin 2 VSS GND pin 3 CD*1 Connection pin for release delay capacitor 4 **SENSE** Detection voltage input pin 5 VDD Voltage input pin Table 6 Figure 5 ***1.** Connect a capacitor between the CD pin and the VSS pin. The release delay time can be adjusted according to the capacitance. Moreover, the CD pin is available even when it is open. ## ■ Absolute Maximum Ratings Table 7 (Ta = -40°C to +125°C unless otherwise specified) | Item S | | Absolute Maximum Rating | Unit | |-------------------------------|-----------------------------------|--|-------------| | Power supply voltage | V _{DD} - V _{SS} | Vss - 0.3 to Vss + 45.0 | V | | SENSE pin voltage | Vsense | $V_{SS} - 30.0$ to $V_{SS} + 45.0$ | V | | CD pin input voltage | V _{CD} | $V_{SS} - 0.3 \text{ to } V_{DD} + 0.3 \le V_{SS} + 7.0$ | > | | Output voltage | Vout | $V_{SS} - 0.3$ to $V_{SS} + 45.0$ | > | | Output current | Іоит | 25 | mA | | Junction temperature | Tj | -40 to +150 | °C | | Operation ambient temperature | Topr | -40 to +125 | °C | | Storage temperature | T _{stg} | -40 to +150 | °C | Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions. ## ■ Thermal Resistance Value Table 8 | Item | Symbol | Condi | tion | Min. | Тур. | Max. | Unit | |--|---------------|--------------|---------|------|------|------|------| | | | | Board A | _ | 159 | _ | °C/W | | | | | Board B | 1 | 113 | 1 | °C/W | | | | HTMSOP-8 | Board C | 1 | 39 | 1 | °C/W | | | | | Board D | 1 | 40 | 1 | °C/W | | | | | Board E | 1 | 30 | 1 | °C/W | | | | HSNT-8(2030) | Board A | 1 | 181 | 1 | °C/W | | | θ_{JA} | | Board B | _ | 135 | _ | °C/W | | Junction-to-ambient thermal resistance*1 | | | Board C | _ | 40 | _ | °C/W | | | | | Board D | _ | 42 | _ | °C/W | | | | | Board E | _ | 32 | _ | °C/W | | | | | Board A | _ | 192 | _ | °C/W | | | | | Board B | 1 | 160 | 1 | °C/W | | | | SOT-23-5 | Board C | 1 | ı | ı | °C/W | | | | | Board D | - | _ | - | °C/W | | | | | Board E | _ | _ | _ | °C/W | ^{*1.} Test environment: compliance with JEDEC STANDARD JESD51-2A **Remark** Refer to "■ **Power Dissipation**" and "**Test Board**" for details. ## **■** Electrical Characteristics Table 9 (Ta = -40°C to +125°C unless otherwise specified) | | | | | | | | ocomoa) | |--------------------------------|--------------------|---|--------------------------------|-------------------------|-----------------------------|-----------|-----------------| | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | Test
Circuit | | Detection voltage*1 | V _{DET} | $V_{DD} = 13.5 \text{ V},$
$16.0 \text{ V} \le V_{DET(S)} \le 18.0 \text{ V}$ | V _{DET(S)}
× 0.985 | V _{DET(S)} | V _{DET(S)} × 1.015 | ٧ | 1 | | | | L type
(V _{HYS} = 0%) | _ | $V_{DET} \times 0.00$ | _ | V | 1 | | Hysteresis width*2 | V _H YS | M type
(V _{HYS} = 5.0%) | V _{DET} × 0.04 | $V_{DET} \times 0.05$ | V _{DET} × 0.06 | V | 1 | | | | N type
(V _{HYS} = 10.0%) | V _{DET} × 0.09 | V _{DET} × 0.10 | V _{DET} × 0.11 | V | 1 | | Current consumption | Iss ₁ | V _{DD} = 13.5 V, V _{SENSE} = 13.5 V | _ | 0.6 | 2.4 | μΑ | 4 | | Operation voltage | V_{DD} | _ | 3.0 | _ | 36.0 | V | 1 | | Output current | Іоит | OUT pin Nch driver,
V _{DD} = 3.0 V, V _{DS} *3 = 0.1 V,
V _{SENSE} = V _{DET(S)} + 1 V | 0.60 | - | _ | mA | 2 | | Leakage current | ILEAK | OUT pin Nch driver,
V _{DD} = 36 V, V _{OUT} = 36 V,
V _{SENSE} = 13.5 V | _ | ı | 2.0 | μΑ | 2 | | Detection response time*4 | treset | | _ | 80 | 200 | μs | 3 | | Release delay time*5 | t _{DELAY} | C _D = 3.3 nF | 8.5 | 10.0 | 11.5 | ms | 3 | | SENSE pin resistance | RSENSE | _ | 6.8 | - | 200 | $M\Omega$ | 4 | | CD pin discharge ON resistance | Rcdd | $V_{DD} = 3.0 \text{ V}, V_{CD} = 0.7 \text{ V}$ | 0.15 | - | 0.90 | kΩ | _ | ^{*1.} V_{DET}: Actual detection voltage value, V_{DET}(S): Set detection voltage value L type (hysteresis width "Unavailable"): $V_{REL} = V_{DET}$ M / N type (hysteresis width "Available"): $V_{REL} = V_{DET} - V_{HYS}$ The time period from when the pulse voltage of $V_{REL(S)} + 1.0 \text{ V} \rightarrow V_{REL(S)} - 1.0 \text{ V}$ is applied to the SENSE pin to when V_{OUT} reaches 50% of V_{DD} . ^{*2.} The release voltage (V_{REL}) are as follows. ^{*3.} V_{DS}: Drain-to-source voltage of the output transistor ^{*4.} The time period from when the pulse voltage of $V_{DET(S)} - 1.0 \text{ V} \rightarrow V_{DET(S)} + 1.0 \text{ V}$ is applied to the SENSE pin after V_{SENSE} reaches the release voltage once, until V_{OUT} reaches 50% of V_{DD} . ^{*5.} V_{REL(S)}: Set release voltage value ## **■** Test Circuits Figure 6 Test Circuit 1 Figure 7 Test Circuit 2 Figure 8 Test Circuit 3 Figure 9 Test Circuit 4 #### ■ Standard Circuit - *1. C_D is a release delay time adjustment capacitor. The C_D should be connected directly to the CD pin and the VSS pin. - *2. R₁ are the external pull-up resistors for the reset output pin. Figure 10 Caution The above connection diagram and constants will not guarantee successful operation. Perform thorough evaluation including the temperature characteristics with an actual application to set the constants. ## **■** Condition of Application Release delay time adjustment capacitor (C_D): A ceramic capacitor with capacitance of 1.0 nF or more is recommended. Caution The CD pin is available even when it is open. Refer to "1. Power on sequence" in "■ Usage Precautions" when using it open. ## ■ Selection of Release Delay Time Adjustment Capacitor (C_D) In this IC, the release delay time adjustment capacitor (C_D) is necessary between the CD pin and the VSS pin to adjust the release delay time (t_{DELAY}) of the detector. Refer to "1.4 Delay circuit" in " Operation" for details. Caution Perform thorough evaluation including the temperature characteristics with an actual application to select C_D. ## **■** Explanation of Terms #### 1. Detection voltage (VDET) The detection voltage is a SENSE pin voltage at which the output voltage in **Figure 13** turns to "L". The detection voltage varies slightly among products of the same specification. The variation of detection voltage between the specified minimum and the maximum is called the detection voltage range (Refer to "**Figure 11 Detection Voltage**"). Example: In V_{DET} = 16.0 V product, the detection voltage is at any point in the range of 15.760 V \leq V_{DET} \leq 16.240 V. This means that some V_{DET} = 16.0 V product has V_{DET} = 15.760 V and some has V_{DET} = 16.240 V. ### 2. Release voltage (V_{REL}) The release voltage is a SENSE pin voltage at which the output voltage in **Figure 13** turns to "H". The release voltage varies slightly among products of the same specification. The variation of release voltage between the specified minimum and the maximum is called the release voltage range (Refer to "**Figure 12 Release Voltage**"). The release voltage becomes the value differs from the detection voltage within the range shown below. M type: 4% to 6% (5% typ.)N type: 9% to 11% (10% typ.) Example: For N type, V_{DET} = 16.0 V product, the release voltage is at any point in the range of 14.026 V \leq V_{REL} \leq 14.779 V despite V_{REL} = 14.400 V typ. This means that some N type, V_{DET} = 16.0 V product has V_{REL} = 14.026 V and some has V_{REL} = 14.779 V. Figure 13 Test Circuit of Detection Voltage and Release Voltage ## 3. Hysteresis width (VHYS) The hysteresis width is the voltage difference between the detection voltage (V_{DET}) and the release voltage (V_{REL}). Voltage difference between V_{REL} and V_{DET} is the hysteresis width (V_{HYS}^{*1}) of the OUT pin. Setting the hysteresis width between V_{DET} and V_{REL} , prevents malfunction caused by noise on the input voltage. *1. Refer to "1. 2 S-19115 Series M / N type" in "■ Operation" for details. ### 4. Feed-through current The feed-through current is a current that flows instantaneously to the VDD pin at the time of detection and release of a voltage detector. ## ■ Operation ## 1. Basic operation Figure 14 and Figure 16 show that the OUT pin being pulled up by resistors (R₁) is an example of basic detector block operation. ## 1. 1 S-19115 Series L type - (1) Release status to detection status - The SENSE pin voltage (V_{SENSE}) rises, and when it exceeds the detection voltage (V_{DET}), the OUT pin output becomes "L" after detection response time (t_{RESET}). - (2) Detection status to release status V_{SENSE} drops, and when it goes below the release voltage ($V_{REL} = V_{DET}$), the OUT pin output changes to "H" after release delay time (t_{DELAY}). ### *1. Parasitic diode Figure 14 Operation of S-19115 Series L type Figure 15 Timing Chart of S-19115 Series L Type #### 1. 2 S-19115 Series M / N type - (1) Release status to detection status - The SENSE pin voltage (V_{SENSE}) rises, and when it exceeds the detection voltage (V_{DET}), the OUT pin output becomes "L" after detection response time (t_{RESET}). - (2) Detection status to release status V_{SENSE} drops, and when it goes below the release voltage ($V_{REL} = V_{DET} - V_{HYS}$), the OUT pin output changes to "H" after release delay time (t_{DELAY}). #### *1. Parasitic diode Figure 16 Operation of S-19115 Series M / N type Figure 17 Timing Chart of S-19115 Series M / N Type #### 1.3 SENSE pin The SENSE pin is the input pin for the detection voltage. The power supply VDD pin and SENSE pin, for voltage detection, are divided. Therefore, as long as a voltage is supplied to the VDD pin, the release signal will be held even if the input voltage to the SENSE pin drops below the minimum operation voltage. Also, the SENSE pin of this IC has a built-in reverse connection protection circuit. Even when the SENSE pin voltage is less than the VSS pin voltage, the voltage flowing from the VSS pin to the SENSE pin is reduced to 0.05 mA typ. #### 1. 3. 1 Error when detection voltage is set externally The detection voltage can be set externally by connecting a node that was resistance-divided by the resistor (R_A) and the resistor (R_B) to the SENSE pin as shown in **Figure 18**. For conventional products without the SENSE pin, external resistor cannot be too large since the resistance-divided node must be connected to the VDD pin. This is because a feed-through current will flow through the VDD pin when it goes from detection to release, and if external resistor is large, problems such as oscillation or larger error in the hysteresis width may occur. In this IC, R_A and R_B in **Figure 18** are easily made larger since the resistance-divided node can be connected to the SENSE pin through which no feed-through current flows. However, be careful of error in the current flowing through the internal resistance (R_{SENSE}) that will occur. Although R_{SENSE}^{*1} in this IC is large to make the error small, R_A and R_B should be selected such that the error is within the allowable limits. ***1.** 6.8 M Ω min. #### 1. 3. 2 Selection of RA and RB In **Figure 18**, the relation between the external setting detection voltage (V_{DX}) and the actual detection voltage (V_{DET}) is ideally calculated by the equation below. $$V_{DX} = V_{DET} \times \left(1 + \frac{R_A}{R_B}\right)$$(1) However, in reality there is an error in the current flowing through RSENSE. When considering this error, the relation between V_{DX} and V_{DET} is calculated as follows. $$V_{DX} = V_{DET} \times \left(1 + \frac{R_A}{R_B \parallel R_{SENSE}}\right)$$ $$= V_{DET} \times \left(1 + \frac{R_A}{\frac{R_B \times R_{SENSE}}{R_B + R_{SENSE}}}\right)$$ $$= V_{DET} \times \left(1 + \frac{R_A}{R_B}\right) + \frac{R_A}{R_{SENSE}} \times V_{DET} \quad \cdots (2)$$ By using equations (1) and (2), the error is calculated as $V_{DET} \times \frac{R_A}{R_{SENSE}}$ The error rate is calculated as follows by dividing the error by the right-hand side of equation (1). $$\frac{R_{A} \times R_{B}}{R_{SENSE} \times (R_{A} + R_{B})} \times 100 \, [\%] = \frac{R_{A} \parallel R_{B}}{R_{SENSE}} \times 100 \, [\%] \quad \cdots (3)$$ As seen in equation (3), the smaller the resistance values of R_A and R_B compared to R_{SENSE} , the smaller the error rate becomes. Also, the relation between the external setting hysteresis width (V_{HX}) and the hysteresis width (V_{HYS}) is calculated by equation below. Error due to R_{SENSE} also occurs to the relation in a similar way to the detection voltage. $$V_{HX} = V_{HYS} \times \left(1 + \frac{R_A}{R_B}\right) \cdots (4)$$ Figure 18 Detection Voltage External Setting Circuit Caution If R_A and R_B are large, the SENSE pin input impedance becomes higher and may cause a malfunction due to noise. In this case, connect a capacitor between the SENSE pin and the VSS pin. ### 1. 4 Delay circuit The delay circuit comes with a function for adjusting the release delay time (t_{DELAY}) from when the SENSE pin voltage (V_{SENSE}) reaches the detection voltage ($V_{REL} = V_{DET} - V_{HYS}$) or lower to when the output from OUT pin inverts t_{DELAY} is determined by the delay coefficient, the release delay time adjustment capacitor (C_D) and the release delay time when the CD pin is open (t_{DELAYO}). They are calculated by the equations below. t_{DELAY} [ms] = Delay coefficient \times C_D [nF] + t_{DELAYO} [ms] Table 10 | Operation | Delay Coefficient | | | |-------------|-------------------|------|------| | Temperature | Min. | Тур. | Max. | | Ta = +125°C | 2.65 | 3.03 | 3.41 | | Ta = +105°C | 2.71 | 3.05 | 3.35 | | Ta = +25°C | 2.92 | 3.06 | 3.14 | | Ta = –40°C | 2.65 | 3.09 | 3.41 | Table 11 | Operation | Release Delay Time when CD Pin is Open (tDELAY0) | | | | | |-------------|--|------|------|--|--| | Temperature | Min. | Тур. | Max. | | | | Ta = +125°C | 0.05 | 0.09 | 0.17 | | | | Ta = +105°C | 0.05 | 0.10 | 0.17 | | | | Ta = +25°C | 0.06 | 0.11 | 0.19 | | | | Ta = –40°C | 0.06 | 0.13 | 0.25 | | | - Caution 1. Mounted board layout should be made in such a way that no current flows into or flows from the CD pin since the impedance of the CD pin is high, otherwise correct delay time cannot be provided. - 2. There is no limit for the capacitance of C_D as long as the leakage current of the capacitor can be ignored against the built-in constant current value (approximately 160 nA). The leakage current may cause error in delay time. When the leakage current is larger than the built-in constant current, no detect or release takes place. - 3. The above equations will not guarantee successful operation. Determine the capacitance of C_D through thorough evaluation including temperature characteristics in the actual usage conditions. ## ■ Usage Precautions ## 1. Power on sequence #### 1. 1 Power on when release delay time adjustment capacitor (C_D) \geq 1 nF When connecting a 1 nF or larger capacitor to the CD pin, there is no specific order for turning on the SENSE and VDD pins. #### 1. 2 Power on when release delay time adjustment capacitor (C_D) < 1 nF or CD pin is open When connecting a capacitor of less than 1 nF to the CD pin, turn on the VDD pin before the SENSE pin as shown in **Figure 19**. Figure 19 Caution When connecting a capacitor of less than 1 nF to the CD pin and the SENSE pin is turned on before the VDD pin, a release may mistakenly occur even if V_{SENSE} is less than V_{REL} . ## 2. SENSE pin voltage glitch (Typical data) ### 2. 1 Detection operation **Figure 20** shows the relation between pulse width and pulse voltage difference (V_{OD}) where the release status can be maintained when a pulse equal to or higher than the detection voltage (V_{DET}) is input to the SENSE pin during release status. - ***1.** $V_{IH} = V_{DET} + V_{OD}$ - *2. $V_{IL} = 13.5 \text{ V}$ Figure 20 Figure 21 SENSE Pin Input Voltage Waveform Caution Figure 20 shows the pulse condition which can maintain the release status. If the pulse whose pulse width and V_{OD} are larger than this condition is input to the SENSE pin, the OUT pin may change to a detection status. #### 2. 2 Release operation **Figure 22** shows the relation between pulse width and pulse voltage difference (V_{OD}) where the detection status can be maintained when a pulse equal to or lower than the release voltage (V_{REL}) is input to the SENSE pin during detection status. - ***1.** $V_{IH} = V_{DET} + 1.0 V$ - *2. $V_{IL} = V_{REL} V_{OD}$ Figure 22 Figure 23 SENSE Pin Input Voltage Waveform Caution Figure 22 shows the pulse condition which can maintain the detection status. If the pulse whose pulse width and V_{OD} are larger than this condition is input to the SENSE pin, the OUT pin may change to a release status. 22 ABLIC Inc. #### ■ Precautions - Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit. - Because the SENSE pin has a high impedance, malfunctions may occur due to noise. Be careful of wiring adjoining SENSE pin wiring in actual applications. - When designing for mass production using an application circuit described herein, the product deviation and temperature characteristics should be taken into consideration. ABLIC Inc. shall not bear any responsibility for patent infringements related to products using the circuits described herein. - ABLIC Inc. claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party. ## ■ Characteristics (Typical Data) ### 1. Detection voltage (VDET), Release voltage (VREL) vs. Temperature (Ta) ## 2. Detection voltage (V_{DET}), Release voltage (V_{REL}) vs. Power supply voltage (V_{DD}) #### 3. Hysteresis width (V_{HYS}) vs. Temperature (Ta) ### 4. Hysteresis width (V_{HYS}) vs. Power supply voltage (V_{DD}) 24 ABLIC Inc. ## 5. Current consumption (I_{SS1}) vs. Temperature (Ta) #### 6. Current consumption (Iss1) vs. Power supply voltage (VDD) (No load) ## 7. Nch transistor output current (I_{OUT}) vs. V_{DS} Remark V_{DS}: Drain-to-source voltage of the output transistor #### 8. Nch transistor output current (I_{OUT}) vs. Power supply voltage (V_{DD}) Remark V_{DS}: Drain-to-source voltage of the output transistor #### 9. Output voltage (Vout) vs. SENSE pin voltage (VSENSE) 26 ABLIC Inc. ## 10. Dynamic response vs. Output pin capacitance (Cout) (CD pin; open) - ***1.** $V_{IH1} = V_{DET(S)} + 1.0 V$ - *2. $V_{IH2} = V_{REL(S)} + 1.0 \text{ V}$ - *3. $V_{IL1} = V_{DET(S)} 1.0 \text{ V}$ - *4. $V_{IL2} = V_{REL(S)} 1.0 \text{ V}$ Figure 24 Test Condition of Response Time Figure 25 Test Circuit of Response Time Caution The above connection diagram and constants will not guarantee successful operation. Perform thorough evaluation including the temperature characteristics with an actual application to set the constants. #### ■ Reference Data # 1. Detection response time (treset) vs. Temperature (Ta) # 2. Detection response time (treset) vs. Power supply voltage (VDD) - ***1.** $V_{IH} = V_{DET(S)} + 1.0 \text{ V}$ - *2. $V_{IL} = V_{DET(S)} 1.0 \text{ V}$ Figure 26 Test Condition of Detection Response Time Figure 27 Test Circuit of Detection Response Time Caution The above connection diagram and constants will not guarantee successful operation. Perform thorough evaluation including the temperature characteristics with an actual application to set the constants. ## 3. Release delay time (t_{DELAY}) vs. Temperature (Ta) ## 4. Release delay time (t_{DELAY}) vs. Power supply voltage (V_{DD}) 5. Release delay time (t_{DELAY}) vs. CD pin capacitance (C_D) (Without output pin capacitance) - *1. $V_{IH} = V_{REL(S)} + 1.0 V$ - ***2.** $V_{IL} = V_{REL(S)} 1.0 \text{ V}$ Figure 28 Test Condition of Release Delay Time Figure 29 Test Circuit of Release Delay Time Caution The above connection diagram and constants will not guarantee successful operation. Perform thorough evaluation including the temperature characteristics with an actual application to set the constants. ## 6. Load dump characteristics ($Ta = +25^{\circ}C$) ## 6. 1 $V_{DET(S)} = 18.0 \text{ V}$ ## **■** Power Dissipation ## HTMSOP-8 | Board | Power Dissipation (P _D) | |-------|-------------------------------------| | Α | 0.79 W | | В | 1.11 W | | С | 3.21 W | | D | 3.13 W | | E | 4.17 W | ## **HSNT-8(2030)** | Board | Power Dissipation (P _D) | |-------|-------------------------------------| | Α | 0.69 W | | В | 0.93 W | | С | 3.13 W | | D | 2.98 W | | F | 3.91 W | ## SOT-23-5 | Board | Power Dissipation (P _D) | |-------|-------------------------------------| | Α | 0.65 W | | В | 0.78 W | | С | _ | | D | _ | | Е | _ | # **HTMSOP-8** Test Board ## (1) Board A | Item | | Specification | |-----------------------------|---|---| | Size [mm] | | 114.3 x 76.2 x t1.6 | | Material | | FR-4 | | Number of copper foil layer | | 2 | | Copper foil layer [mm] | 1 | Land pattern and wiring for testing: t0.070 | | | 2 | - | | | 3 | - | | | 4 | 74.2 x 74.2 x t0.070 | | Thermal via | | - | ## (2) Board B | Item | | Specification | |-----------------------------|---|---| | Size [mm] | | 114.3 x 76.2 x t1.6 | | Material | | FR-4 | | Number of copper foil layer | | 4 | | Copper foil layer [mm] | 1 | Land pattern and wiring for testing: t0.070 | | | 2 | 74.2 x 74.2 x t0.035 | | | 3 | 74.2 x 74.2 x t0.035 | | | 4 | 74.2 x 74.2 x t0.070 | | Thermal via | | - | # (3) Board C | Item | | Specification | |-----------------------------|---|---| | Size [mm] | | 114.3 x 76.2 x t1.6 | | Material | | FR-4 | | Number of copper foil layer | | 4 | | Copper foil layer [mm] | 1 | Land pattern and wiring for testing: t0.070 | | | 2 | 74.2 x 74.2 x t0.035 | | | 3 | 74.2 x 74.2 x t0.035 | | | 4 | 74.2 x 74.2 x t0.070 | | Thermal via | | Number: 4
Diameter: 0.3 mm | enlarged view No. HTMSOP8-A-Board-SD-1.0 # **HTMSOP-8** Test Board O IC Mount Area ## (4) Board D | Item | | Specification | |-----------------------------|---|--| | Size [mm] | | 114.3 x 76.2 x t1.6 | | Material | | FR-4 | | Number of copper foil layer | | 4 | | Copper foil layer [mm] | 1 | Pattern for heat radiation: 2000mm ² t0.070 | | | 2 | 74.2 x 74.2 x t0.035 | | | 3 | 74.2 x 74.2 x t0.035 | | | 4 | 74.2 x 74.2 x t0.070 | | Thermal via | | - | enlarged view ## (5) Board E | Item | | Specification | |-----------------------------|---|--| | Size [mm] | | 114.3 x 76.2 x t1.6 | | Material | | FR-4 | | Number of copper foil layer | | 4 | | Copper foil layer [mm] | 1 | Pattern for heat radiation: 2000mm ² t0.070 | | | 2 | 74.2 x 74.2 x t0.035 | | | 3 | 74.2 x 74.2 x t0.035 | | | 4 | 74.2 x 74.2 x t0.070 | | Thermal via | | Number: 4
Diameter: 0.3 mm | enlarged view No. HTMSOP8-A-Board-SD-1.0 # HSNT-8(2030) Test Board O IC Mount Area ## (1) Board A | Item | | Specification | |-----------------------------|---|---| | Size [mm] | | 114.3 x 76.2 x t1.6 | | Material | | FR-4 | | Number of copper foil layer | | 2 | | Copper foil layer [mm] | 1 | Land pattern and wiring for testing: t0.070 | | | 2 | - | | | 3 | - | | | 4 | 74.2 x 74.2 x t0.070 | | Thermal via | | - | ## (2) Board B | Item | | Specification | |-----------------------------|---|---| | Size [mm] | | 114.3 x 76.2 x t1.6 | | Material | | FR-4 | | Number of copper foil layer | | 4 | | Copper foil layer [mm] | 1 | Land pattern and wiring for testing: t0.070 | | | 2 | 74.2 x 74.2 x t0.035 | | | 3 | 74.2 x 74.2 x t0.035 | | | 4 | 74.2 x 74.2 x t0.070 | | Thermal via | | - | ## (3) Board C | Item | | Specification | |-----------------------------|---|---| | Size [mm] | | 114.3 x 76.2 x t1.6 | | Material | | FR-4 | | Number of copper foil layer | | 4 | | Copper foil layer [mm] | 1 | Land pattern and wiring for testing: t0.070 | | | 2 | 74.2 x 74.2 x t0.035 | | | 3 | 74.2 x 74.2 x t0.035 | | | 4 | 74.2 x 74.2 x t0.070 | | Thermal via | | Number: 4
Diameter: 0.3 mm | enlarged view No. HSNT8-A-Board-SD-2.0 # HSNT-8(2030) Test Board O IC Mount Area # (4) Board D | Item | | Specification | |-----------------------------|---|--| | Size [mm] | | 114.3 x 76.2 x t1.6 | | Material | | FR-4 | | Number of copper foil layer | | 4 | | Copper foil layer [mm] | 1 | Pattern for heat radiation: 2000mm ² t0.070 | | | 2 | 74.2 x 74.2 x t0.035 | | | 3 | 74.2 x 74.2 x t0.035 | | | 4 | 74.2 x 74.2 x t0.070 | | Thermal via | | - | enlarged view ## (5) Board E | Item | | Specification | |-----------------------------|---|--| | Size [mm] | | 114.3 x 76.2 x t1.6 | | Material | | FR-4 | | Number of copper foil layer | | 4 | | Copper foil layer [mm] | 1 | Pattern for heat radiation: 2000mm ² t0.070 | | | 2 | 74.2 x 74.2 x t0.035 | | | 3 | 74.2 x 74.2 x t0.035 | | | 4 | 74.2 x 74.2 x t0.070 | | Thermal via | | Number: 4
Diameter: 0.3 mm | enlarged view No. HSNT8-A-Board-SD-2.0 # **SOT-23-3/3S/5/6** Test Board ## (1) Board A | Item | | Specification | |-----------------------------|---|---| | Size [mm] | | 114.3 x 76.2 x t1.6 | | Material | | FR-4 | | Number of copper foil layer | | 2 | | Copper foil layer [mm] | 1 | Land pattern and wiring for testing: t0.070 | | | 2 | - | | | 3 | - | | | 4 | 74.2 x 74.2 x t0.070 | | Thermal via | | - | ## (2) Board B | Item | | Specification | |-----------------------------|---|---| | Size [mm] | | 114.3 x 76.2 x t1.6 | | Material | | FR-4 | | Number of copper foil layer | | 4 | | Copper foil layer [mm] | 1 | Land pattern and wiring for testing: t0.070 | | | 2 | 74.2 x 74.2 x t0.035 | | | 3 | 74.2 x 74.2 x t0.035 | | | 4 | 74.2 x 74.2 x t0.070 | | Thermal via | | - | No. SOT23x-A-Board-SD-2.0 ### No. FP008-A-P-SD-2.0 | TITLE | HTMSOP8-A-PKG Dimensions | | | |------------|--------------------------|--|--| | No. | FP008-A-P-SD-2.0 | | | | ANGLE | \bullet | | | | UNIT | mm | | | | | | | | | | | | | | | | | | | ABLIC Inc. | | | | #### No. FP008-A-C-SD-1.0 | TITLE | HTMSOP8-A-Carrier Tape | | | |------------|------------------------|--|--| | No. | FP008-A-C-SD-1.0 | | | | ANGLE | | | | | UNIT | mm | | | | | | | | | | | | | | | | | | | ABLIC Inc. | | | | # No. FP008-A-R-SD-2.0 | TITLE | HTMSOP8-A-Reel | | | |------------|------------------|------|-------| | No. | FP008-A-R-SD-2.0 | | | | ANGLE | | QTY. | 4,000 | | UNIT | mm | | | | | | | | | | | | | | | | | | | ABLIC Inc. | | | | # No. FP008-A-L-SD-2.0 | TITLE | HTMSOP8-A -Land Recommendation | | |------------|--------------------------------|--| | No. | FP008-A-L-SD-2.0 | | | ANGLE | | | | UNIT | mm | | | | | | | | | | | | | | | ABLIC Inc. | | | The heat sink of back side has different electric potential depending on the product. Confirm specifications of each product. Do not use it as the function of electrode. No. PP008-A-P-SD-2.0 | TITLE | HSNT-8-A-PKG Dimensions | | | |------------|-------------------------|--|--| | No. | PP008-A-P-SD-2.0 | | | | ANGLE | | | | | UNIT | mm | | | | | | | | | | | | | | | | | | | ABLIC Inc. | | | | ### No. PP008-A-C-SD-1.0 | TITLE | HSNT-8-A-Carrier Tape | | |------------|-----------------------|--| | No. | PP008-A-C-SD-1.0 | | | ANGLE | | | | UNIT | mm | | | | | | | | | | | | | | | ABLIC Inc. | | | ### No. PP008-A-R-SD-2.0 | TITLE | HSNT-8-A-Reel | | | |------------|------------------|------|-------| | No. | PP008-A-R-SD-2.0 | | | | ANGLE | | QTY. | 5,000 | | UNIT | mm | | | | | | | | | | | | | | | | | | | ABLIC Inc. | | | | # No. PP008-A-L-SD-1.0 | | T | | |------------|----------------------|--| | TITLE | HSNT-8-A | | | | -Land Recommendation | | | No. | PP008-A-L-SD-1.0 | | | ANGLE | | | | UNIT | mm | | | | | | | | | | | | | | | | | | | ABLIC Inc. | | | # No. MP005-A-P-SD-1.3 | TITLE | SOT235-A-PKG Dimensions | | | |--------------|-------------------------|--|--| | No. | MP005-A-P-SD-1.3 | | | | ANGLE | | | | | UNIT | mm | | | | | | | | | | | | | | | | | | | A DI IC In a | | | | | ABLIC Inc. | | | | | TITLE | SOT235-A-Carrier Tape | | |------------|-----------------------|--| | No. | MP005-A-C-SD-2.1 | | | ANGLE | | | | UNIT | mm | | | | | | | | | | | | | | | ABLIC Inc. | | | ### No. MP005-A-R-SD-2.0 | TITLE | SOT235-A-Reel | | | |------------|------------------|------|-------| | No. | MP005-A-R-SD-2.0 | | | | ANGLE | | QTY. | 3,000 | | UNIT | mm | | | | | | | | | | | | | | | | | | | ABLIC Inc. | | | | #### **Disclaimers (Handling Precautions)** - 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice. - 2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design. - ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use of the information described herein. - 3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described herein. - 4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute maximum ratings, operation voltage range and electrical characteristics, etc. - ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to the use of the products outside their specified ranges. - 5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use. - 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures. - 7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear, biological or chemical weapons or missiles, or use any other military purposes. - 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by ABLIC, Inc. Do not apply the products to the above listed devices and equipments. - ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of the products. - 9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction. - The entire system in which the products are used must be sufficiently evaluated and judged whether the products are allowed to apply for the system on customer's own responsibility. - 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use. - 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc. - 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used. - 13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express permission of ABLIC Inc. - 14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales representative. - 15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into the English language and the Chinese language, shall be controlling.