15-MEMORY TONE/PULSE DIALER WITH LOCK AND HANDFREE FUNCTIONS

GENERAL DESCRIPTION

The W9145 series are Si-gate CMOS ICs that provide the necessary signals for either pulse or tone dialing. The W9145 series feature a key tone function, handfree dialing, a lock function, thirteen 16digit automatic dialing memories, and two by 32 -digit for redial and save memory.

FEATURES

- DTMF/Pulse switchable dialer
- Two by 32 digits for redial and save memory
- Three by 16 digits for one-touch direct repertory
- Ten by 16 digits for two-touch indirect repertory
- Unlimited dialing length (redial inhibited if dialing length exceeds 32 digits in normal dialing)
- Auto Pause Access for PBX and toll service operations (3.1 seconds per pause)
- Easy operation with redial, store, auto and pause keypads
- Key tone output for recognition of valid keypad entry
- Call disconnect (CD) key for line break operation
- Mute key for speech mute
- Flash time: $98 \mathrm{mS}, 305 \mathrm{mS}$ or 600 mS
- Minimum tone output duration: 93 mS
- Minimum intertone pause: 93 mS
- 0 or 9 dialing inhibition pin for PABX system or long distance dialing lock out
- Automatic switching from pulse mode to tone mode by */T key operation
- Break/make ratio pin selectable
- Uses Form A keyboard or standard 5×5 matrix keyboard
- Uses inexpensive 3.579545 MHz television color-burst crystal
- Internally generated power-on reset
- Packaged in 22/24-pin DIP
- The different dialers in the W9145 series are shown in the following table:

TYPE NO.	PULSE (ppS)	FLASH	B/M	HANDFREE	LOCK
W9145	10	$98 / 305 / 600$	Pin	No	No
W9145A	10	$98 / 305 / 600$	Pin	Yes	No
W9145L	10	$98 / 305 / 600$	Pin	No	Yes
W9145AL	10	$98 / 305 / 600$	Pin	Yes	Yes

PIN CONFIGURATIONS

PIN DESCRIPTION

W9145 SERIES

SYMBOL	22-PIN	24-PIN	I/O	FUNCTION
Column- Row Inputs	$1-4$ $18-22$	$1-4$ $20-24$	I	Keyboard inputs may be connected to either a standard keyboard, an inexpensive signal contact (Form A) keyboard, or electronic input from a μ C. A valid key entry is defined by a single row being connected to a single column.
XT, $\overline{\text { XT }}$	6,7	6,7	I, O	A built-in inverter provides oscillation by means of an inexpensive 3.579545 MHz crystal or ceramic resonator.
T/P	8	8	O	The T/P MUTE is a conventional CMOS inverter that pulls to VDD in the absence of keypad input and pulls to Vss when an address keypad entry is sensed (excluding the * and \# keypads in pulse mode). When any keypad in row 5 and column 5 is pushed, the mute out remains at high level.
MUTE	14	16	I	Pull to Vss to enable tone mode. Pull to VDD to enable pulse mode (10 ppS).
$\overline{\text { HKS }}$	9	9	I	Hook switch input. When pulled to high, chip is in on-hook state (no operation). When pulled to low, chip is in off- hook state (enabled for normal operation). This pin is pulled to VDD by internal resistor. Note: This pin operates in conjunction with the handfree control pins; for further information see description of handfree control pins below.
B/M	16	16	I	B/M = 1: Break/Make ratio is 60:40. B/M = 0: Break/Make ratio is $67: 33$.
This pin has no function in tone mode.				

W9145 SERIES

Pin Description, continued

SYMBOL	22-PIN	24-PIN	I/O	FUNCTION HFO HFO			

W9145 SERIES

Pin Description, continued

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Keyboard Operation

C1	C2	C3	C4	$\overline{\mathrm{DP}} / \overline{\mathrm{C} 5}$
1	2	3	M1	MUTE
4	5	6	M2	CD
7	8	9	M3	F1
*/T	0	\#	SAVE	F2
RD	S	A	P	F3

- MUTE: Mute key
- CD: Call Disconnect
- */T: * \& P \rightarrow T key
- RD: One-key Redial
- S: Store
- A: Auto dialing
- P: Pause
- M1 to M3: Memory 1 to 3
- SAVE: Save Memory
- F1, F2, F3: 98/305/600 mS

Normal Dialing

OFF HOOK (or ON HOOK \& $\overline{\mathrm{HFI}}{ }^{\sigma} \mathrm{L}$), $\mathrm{D} 1, \mathrm{D} 2, \ldots, \mathrm{Dn}$

1. D1, D2, ..., Dn will be dialed out.
2. Dialing length is unlimited, but redial is inhibited if length oversteps 32 digits.

Redialing

1. OFF HOOK (or ON HOOK \& $\overline{\mathrm{HFl}}{ }^{\circ} \mathrm{L}$), $\mathrm{D} 1, \mathrm{D} 2, \ldots, \mathrm{Dn}$, BUSY RD
a. The one-key redialing function timing diagram is shown in Figure 4.
b. Once dialing of D1 to Dn is finished, pressing RD key will cause the pulse output pin to go low for 2.2 seconds break time and 600 mS pause will automatically be added.
c. If the pulses of the dialed number $\begin{array}{ll}\mathrm{D} 1 & \text { to } \begin{array}{ll}\text { Dn } \\ \text { have not finished, } \\ \text { the }\end{array} \text { RDey will be ignored. }\end{array}$
2. OFF HOOK, D1, D2 , \ldots, Dn BUSY, Come ON HOOK, OFF HOOK (or $\mathrm{ONHOOK} \& \overline{\mathrm{HFI}}{ }^{\sigma} \mathrm{I}$), RD

W9145 SERIES

Vinbond
 Electronics Corp.

$\overline{\mathrm{HFI}}{ }^{\circ} \mathrm{L}, \mathrm{RD}$
If RD is the first key after off-hook, only the redialing function will be executed and the pulse output pin will not go low for the break time of 2.2 seconds.

Access Paus

OFF HOOK (or $\mathrm{ON} \mathrm{HOOK} \& \overline{\overline{\mathrm{HFI}}^{\sigma} \mathrm{I}}$), $\mathrm{D} 1, \mathrm{D} 2, \mathrm{P}, \mathrm{D} 3, \ldots, \mathrm{Dn}$

1. The pause function can be stored in memory.
2. The pause function may be executed in normal dialing, redialing, or repertory dialing.
3. The pause function timing diagram is shown in Figure 5.

Pulse-to-tone (${ }^{*} / \mathrm{T}$)

| D 1 |
| :---: | $\mathrm{D} 2^{\prime}, \ldots, \mathrm{Dn}^{\prime}$

1. If the mode switch is set to pulse mode, then the output signal will be:

D1, D2, ..., Dn, Pause (3.1S) D1', D2', ..., Dn'.
(Pulse)
(Tone)
2. If the mode switch is set to tone mode, then the output signal will be:

D1, D2, ..., Dn, *, D1' , D2', ..., Dn'
(Tone) (Tone) (Tone)
3. The device can be reset to pulse mode only by going on-hook; device remains in tone mode when the digits have been dialed out.
4. The $\mathrm{P} \rightarrow \mathrm{T}$ function timing diagram is shown in Figure 6.

Flash

OFF HOOK (or ON HOOK \& $\overline{\text { HFI }^{\sigma}}{ }^{\top}$), F

1. Flash key cannot be stored as a digit in memory. Flash key has first priority among keyboard functions.
2. The system will return to the initial state after the break time is finished.
3. The flash function timing diagram is shown in Figure 7.

Number Store

1. OFF HOOK

$\& \overline{\mathrm{HFI}}{ }^{\circ} \mathrm{I}$ $\mathrm{D} 1, \mathrm{D} 2, \ldots, \mathrm{Dn}$ S S, Mn (or Ln) ON HOOK (or ON HOOK \& $\overline{\mathrm{HFI}}{ }^{\sigma}$,)
a. The dialing of D1, D2, ..., Dn must be finished before S key may be pressed.
b. D1, D2, ..., Dn will be stored in memory location Mn or Ln and then dialed out.
c. $M n=M 1$ to M3; $L n=0$ to $9,{ }^{*}$, Pause.
2.

c. The store mode is released once the store function is completed or the state of the hook switch changes.

Repertory Dialing

1. OFF HOOK (or ON HOOK \& $\overline{\mathrm{HFI}}{ }^{\sigma} \mathrm{L}$), Mn
2.

(or \qquad \& \qquad

Save Key

1. OFF HOOK (or ON HOOK \& $\overline{\mathrm{HFI}}{ }^{\circ} \mathrm{I}$), D1 , D2 , \ldots, SAVE

If the dialing D1 to Dn is finished, pressing the SAVE key will cause D1 to Dn to be
of duplicated to the SAVE memory.
2. ON HOOK Come OFF HOOK, SAVE
D1 to Dn will be dialed out after the SAVE key is pressed.

Call Disconnect

OFF HOOK CD

The $\overline{\mathrm{DP}} / \overline{\mathrm{C} 5}$ pin will go low (line break) when the CD key is pressed and the system will be reset to initial state.

Mute Key

The mute output will be switched on as long as the MUTE key is depressed.

W9145 SERIES

CD and MUTE key function timing diagram is shown in Figure 8.

Mixed Dialing

1.
 Repertory dialing + Normal dialing
2. \square
3.
 $+\quad$ Normal dialing + Repertory dialing
a. Redialing and SAVE dialing are valid for first key-in only.
b. The second sequence should not be performed until the first sequence is dialed out completely.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
DC Supply Voltage	VDD-VSs	-0.3 to +7.0	V
Input/Output Voltage	VIL	$\mathrm{Vss}-0.3$	V
	VIH	VDD +0.3	V
	VoL	$\mathrm{Vss}-0.3$	V
	VoH	$\mathrm{VDD}+0.3$	V
Power Dissipation	PD	120	mW
Operating Temperature	TOPR	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-55 to +150	${ }^{\circ} \mathrm{C}$

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

DC CHARACTERISTICS

VDD $=2.5 \mathrm{~V}$, $\mathrm{FosC}=3.58 \mathrm{MHz}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage	VDD	Tone	2.0	-	5.5	V
		Pulse	2.0	-	5.5	V
Operating Current	Iop	Tone, Unloaded	-	0.6	2	mA
		Pulse, Unloaded	-	0.2	0.5	mA
Memory Retention	IMR	$\begin{aligned} & \overline{\mathrm{HKS}}=1, \mathrm{TA}=25^{\circ} \mathrm{C} \\ & \mathrm{VDD}=1.0 \mathrm{~V} \end{aligned}$	-	0.1	0.2	$\mu \mathrm{A}$
Standby Current	Is	$\overline{\mathrm{HKS}}=0, \mathrm{VDD}=2.5 \mathrm{~V}$	-	0.1	5	$\mu \mathrm{A}$
Tone Output	VTO	Row Group, RL=5 $\mathrm{K} \Omega$	130	150	170	Vrms

W9145 SERIES

DC Characteristics, continued

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Pre-Emphasis		Column Group/Row Group $\text { VDD }=2.0-5.5 \mathrm{~V}$	1	2	3	dB
DTMF Distortion	THD	$R \mathrm{~L}=5 \mathrm{~K} \Omega$	-	-30	-23	dB
HFO Drive/Sink Current	IHFH	$\mathrm{VHFH}=2.0 \mathrm{~V}$	0.5	-	-	mA
	IHFL	$\mathrm{VHFL}=0.5 \mathrm{~V}$	0.5	-	-	mA
Tone Output External Load Impedance	RL	THD $<-23 \mathrm{~dB}$	5	-	-	$\mathrm{K} \Omega$
Tone Output DC Level	VDC	$\mathrm{VDD}=2.0-5.5 \mathrm{~V}$	1.0	-	3.0	V
Tone Output Sink Current	ITL	V TO $=0.5 \mathrm{~V}$	0.2	-	-	mA
Pulse Output Drive/Sink Current	IPH	$\mathrm{VPO}=2.0 \mathrm{~V}$	-0.2	-	-	mA
	IPL	$\mathrm{VPO}=0.5 \mathrm{~V}$	0.2	-	-	mA
T/P MUTE Output Drive/Sink Current	IMH	Vmo $=2.0 \mathrm{~V}$	-0.2	-	-	mA
	IML	Vmo $=0.5 \mathrm{~V}$	2	-	-	mA
Key Tone Output Drive/Sink Current	IKH	$\mathrm{VKO}=2.0 \mathrm{~V}$	-0.5	-	-	mA
	IKL	$\mathrm{VKL}=0.5 \mathrm{~V}$	0.5	-	-	mA
X MUTE Drive/Sink Current	ILH	$\mathrm{VLO}=2.0 \mathrm{~V}$	-0.2	-	-	mA
	IIL	$\mathrm{VLO}=0.5 \mathrm{~V}$	0.2	-	-	mA
Input Voltage Low	VIL		GND	-	$\begin{gathered} 0.3 \\ \text { VDD } \end{gathered}$	V
Input Voltage High	VIH		$\begin{gathered} 0.7 \\ \text { VDD } \end{gathered}$	-	VDD	V
Keypad Input Drive/Sink Current	IKD	$\mathrm{VI}=0 \mathrm{~V}$	10	30	80	$\mu \mathrm{A}$
	IKS	$\mathrm{VI}=2.5 \mathrm{~V}$	200	400	-	$\mu \mathrm{A}$
Control Pin Input	IIN	$\overline{\mathrm{HKS}}, \mathrm{MODE}, \overline{\mathrm{TEST}}, \mathrm{B} / \mathrm{M}$	-	-	± 25	$\mu \mathrm{A}$

AC CHARACTERISTICS

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Key-in Debounce	TKID		-	20	-	mS
Key-release Debounce	TKRD		-	20	-	mS
Key tone Delay	TKD		-	20	-	mS

W9145 SERIES

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
One-key Redial Break Time	TRB		-	2.2	-	S
One-key Redial Break Pause Time	TRP		-	600	-	mS
Pulse Mute Delay	TmD	$B / M=1$	-	40	-	mS
		$B / M=0$	-	33.3	-	mS
Pre-digit Pause	TPDP	$B / M=1$	-	40	-	mS
		$\mathrm{B} / \mathrm{M}=0$	-	33.3	-	mS
Pulse Rate	TPR	Mode $=1$	-	10	-	ppS
Interdigit Pause	TIDP		-	800	-	mS
Make/Break Ratio	$\mathrm{M}: \mathrm{B}$	$B / \mathrm{M}=1$	-	40:60	-	\%
		$B / M=0$	-	33.3:66.7	-	\%
Tone Duration	Ttd	Auto Dialing	-	93	-	mS
Intertone Pause	TITP	Auto Dialing	-	93	-	mS
Flash Break Time	Tff	F1	-	98	-	mS
		F2	-	305	-	mS
		F3	-	600	-	mS
Pause Time	TP		-	3.1	-	S
Key Tone Frequency	$f 8$		-	1.2	-	KHz

TIMING WAVEFORMS

Figure 1. Pulse Mode Dialing Timing Diagram

Figure 2(a). Tone Mode Normal Dialing Diagram

Timing Waveforms, continued

Figure 2(b). Tone Mode Redialing Timing Diagram

Figure 3(a). Handfree Function Timing Diagram

Timing Waveforms, continued

Figure 3(b). Handfree Function Timing Diagram

Figure 3(c). Handfree Function Timing Diagram

Timing Waveforms, continued

Figure 4. Pulse Mode Timing Diagram

Figure 5. Pause Function Timing Diagram

Timing Waveforms, continued

Figure 6. $\mathrm{P} \rightarrow$ T Operation Timing Diagram in Normal Dialing

Figure 7. Flash Operation Timing Diagram

Figure 8. Mute Key Operation Timing Diagram

W9145 SERIES

Headquarters
No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan
TEL: 886-3-5770066
FAX: 886-3-5792697
http://www.winbond.com.tw/
Voice \& Fax-on-demand: 886-2-7197006
Winbond Electronics (H.K.) Ltd. Winbond Electronics North America Corp.
Rm. 803, World Trade Square, Tower II, Winbond Memory Lab.
123 Hoi Bun Rd., Kwun Tong, Winbond Microelectronics Corp.
Kowloon, Hong Kong Winbond Systems Lab.
TEL: 852-27516023
FAX: 852-27552064
2730 Orchard Parkway, San Jose,
CA 95134, U.S.A.
TEL: 1-408-9436666
FAX: 1-408-9436668
Taipei Office
11F, No. 115, Sec. 3, Min-Sheng East Rd.,
Taipei, Taiwan
TEL: 886-2-7190505
FAX: 886-2-7197502
Note: All data and specifications are subject to change without notice.

