DatasheetsPDF.com

AT89C2051 Dataheets PDF



Part Number AT89C2051
Manufacturers ATMEL Corporation
Logo ATMEL Corporation
Description 8-Bit Microcontroller
Datasheet AT89C2051 DatasheetAT89C2051 Datasheet (PDF)

Features • Compatible with MCS®-51Products • 2K Bytes of Reprogrammable Flash Memory – Endurance: 10,000 Write/Erase Cycles • 2.7V to 6V Operating Range • Fully Static Operation: 0 Hz to 24 MHz • Two-level Program Memory Lock • 128 x 8-bit Internal RAM • 15 Programmable I/O Lines • Two 16-bit Timer/Counters • Six Interrupt Sources • Programmable Serial UART Channel • Direct LED Drive Outputs • On-chip Analog Comparator • Low-power Idle and Power-down Modes • Green (Pb/Halide-free) Packaging Opti.

  AT89C2051   AT89C2051


Document
Features • Compatible with MCS®-51Products • 2K Bytes of Reprogrammable Flash Memory – Endurance: 10,000 Write/Erase Cycles • 2.7V to 6V Operating Range • Fully Static Operation: 0 Hz to 24 MHz • Two-level Program Memory Lock • 128 x 8-bit Internal RAM • 15 Programmable I/O Lines • Two 16-bit Timer/Counters • Six Interrupt Sources • Programmable Serial UART Channel • Direct LED Drive Outputs • On-chip Analog Comparator • Low-power Idle and Power-down Modes • Green (Pb/Halide-free) Packaging Option 8-bit Microcontroller with 2K Bytes Flash 1. Description The AT89C2051 is a low-voltage, high-performance CMOS 8-bit microcomputer with 2K bytes of Flash programmable and erasable read-only memory (PEROM). The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the industry-standard MCS-51 instruction set. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C2051 is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications. The AT89C2051 provides the following standard features: 2K bytes of Flash, 128 bytes of RAM, 15 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, a precision analog comparator, on-chip oscillator and clock circuitry. In addition, the AT89C2051 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The power-down mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset. AT89C2051 0368H–MICRO–6/08 2. Pin Configuration 2.1 20-lead PDIP/SOIC 3. Block Diagram RST/VPP (RXD) P3.0 (TXD) P3.1 XTAL2 XTAL1 (INT0) P3.2 (INT1) P3.3 (TO) P3.4 (T1) P3.5 GND 1 2 3 4 5 6 7 8 9 10 20 VCC 19 P1.7 18 P1.6 17 P1.5 16 P1.4 15 P1.3 14 P1.2 13 P1.1 (AIN1) 12 P1.0 (AIN0) 11 P3.7 2 AT89C2051 0368H–MICRO–6/08 AT89C2051 4. Pin Description 4.1 VCC 4.2 GND 4.3 Port 1 4.4 Port 3 Supply voltage. Ground. The Port 1 is an 8-bit bi-directional I/O port. Port pins P1.2 to P1.7 provide internal pull-ups. P1.0 and P1.1 require external pull-ups. P1.0 and P1.1 also serve as the positive input (AIN0) and the negative input (AIN1), respectively, of the on-chip precision analog comparator. The Port 1 output buffers can sink 20 mA and can drive LED displays directly. When 1s are written to Port 1 pins, they can be used as inputs. When pins P1.2 to P1.7 are used as inputs and are externally pulled low, they will source current (IIL) because of the internal pull-ups. Port 1 also receives code data during Flash programming and verification. Port 3 pins P3.0 to P3.5, P3.7 are seven bi-directional I/O pins with internal pull-ups. P3.6 is hard-wired as an input to the output of the on-chip comparator and is not accessible as a general-purpose I/O pin. The Port 3 output buffers can sink 20 mA. When 1s are written to Port 3 pins they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL) because of the pull-ups. Port 3 also serves the functions of various special features of the AT89C2051 as listed below: 4.5 RST 4.6 XTAL1 Port Pin P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 Alternate Functions RXD (serial input port) TXD (serial output port) INT0 (external interrupt 0) INT1 (external interrupt 1) T0 (timer 0 external input) T1 (timer 1 external input) Port 3 also receives some control signals for Flash programming and verification. Reset input. All I/O pins are reset to 1s as soon as RST goes high. Holding the RST pin high for two machine cycles while the oscillator is running resets the device. Each machine cycle takes 12 oscillator or clock cycles. Input to the inverting oscillator amplifier and input to the internal clock operating circuit. 0368H–MICRO–6/08 3 4.7 XTAL2 Output from the inverting oscillator amplifier. 5. Oscillator Characteristics The XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 5-1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 5-2. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed. Figure 5-1. Oscillator Connections Note: C1, C2 = 30 pF ± 10 pF for Crystals = 40 pF ± 10 pF for Ceramic Resonators Figure 5-2. External Clock Drive Configuration 4 AT89C2051 0368H–MICRO–6/08 AT89C2051 6. Special Function Registers A map.


AT89C1051U AT89C2051 AT89C4051


@ 2014 :: Datasheetspdf.com :: Semiconductors datasheet search & download site.
(Privacy Policy & Contact)