DatasheetsPDF.com

TPS65288 Dataheets PDF



Part Number TPS65288
Manufacturers Texas Instruments
Logo Texas Instruments
Description Synchronous Step Down Three DC-DC Converter
Datasheet TPS65288 DatasheetTPS65288 Datasheet (PDF)

TPS65288 www.ti.com SLVSBX3 – MAY 2013 4.5-V to 18-V Input, High Current, Synchronous Step Down Three DC-DC Converter with Integrated FET and 2 Power Switches Check for Samples: TPS65288 FEATURES 1 • Wide Input Supply Voltage Range: 4.5 V - 18 V • 0.8-V, 1% Accuracy Reference • Continuous Loading: 3 A (Buck1), 2 A (Buck2 and 3) • Maximum Current: 3.5 A (Buck 1), 2.5 A (Buck2 and 3) • 300-kHz – 2.2-MHz Switching Frequency Set By External Resistor • External Enable Pins With Built-In Current S.

  TPS65288   TPS65288



Document
TPS65288 www.ti.com SLVSBX3 – MAY 2013 4.5-V to 18-V Input, High Current, Synchronous Step Down Three DC-DC Converter with Integrated FET and 2 Power Switches Check for Samples: TPS65288 FEATURES 1 • Wide Input Supply Voltage Range: 4.5 V - 18 V • 0.8-V, 1% Accuracy Reference • Continuous Loading: 3 A (Buck1), 2 A (Buck2 and 3) • Maximum Current: 3.5 A (Buck 1), 2.5 A (Buck2 and 3) • 300-kHz – 2.2-MHz Switching Frequency Set By External Resistor • External Enable Pins With Built-In Current Source for Easy Sequencing • External Soft Start Pins • Adjustable Cycle-by-Cycle Current Limit Set by External Resistor • Current-Mode Control With Simple Compensation Circuit • Pulse Skipping Mode to Achieve High Light Load Efficiency, Allowing for an Output Ripple Better than 2% • Forced PWM Mode • Support Pre-Biased Outputs • Power Good Supervisor and Reset Generator • 2 USB Power Switches current limiting at typical 1.2A (0.8/1.0/1.4/1.6/1.8/2.0/2.2A Available with Manufacture Trim Options) • Small, Thermally Efficient 40-Pin 6-mm x 6-mm RHA (QFN) package • -40°C to 125°C Junction Temperature Range DESCRIPTION/ORDERING INFORMATION TPS65288 is a power management IC with three step-down buck converters. Both high-side and low-side MOSFETs are integrated to provide fully synchronous conversion with higher efficiency. The converters are designed to simplify its application while giving the designer the option to optimize their usage according to the target application. The converters can operate in 5-, 9-, 12- or 15-V systems. The output voltage can be set externally using a resistor divider to any value between 0.8 V and the input supply minus the resistive drops on the converter path. Each converter features enable pin that allows a delayed start-up for sequencing purposes, soft start pin that allows adjustable soft-start time by choosing the soft-start capacitor, and a current limit (RLIM) pin that enables designer to adjust current limit by selecting an external resistor and optimize the choice of inductor. All converters operate in ‘hiccup mode’: Once an over-current lasting more than 10 ms is sensed in any of the converters, they will shut down for 10 ms and then the start-up sequencing will be tried again. If the overload has been removed, the converter will ramp up and operate normally. If this is not the case the converter will see another over-current event and shuts down again repeating the cycle (hiccup) until the failure is cleared. If an overload condition lasts for less than 10 ms, only the relevant converter affected will shut-down and re-start and no global hiccup mode will occur. The switching frequency of the converters is set by an external resistor connected to ROSC pin. The switching regulators are designed to operate from 300 kHz to 2.2 MHz. The converters operate with 180° phase between then to minimize the input filter requirements. All converters have peak current mode control which simplifies external frequency compensation. The device has a built-in slope compensation ramp. The slope compensation can prevent sub harmonic oscillations in peak current mode control. A traditional type II compensation network can stabilize the system and achieve fast transient response. Moreover, an optional capacitor in parallel with the upper resistor of the feedback divider provides one more zero and makes the crossover frequency over 100 kHz. All converters feature an automatic low power pulse skipping mode (PSM) which improves efficiency during light loads and standby operation, while guaranteeing a very low output ripple, allowing for a value of less than 2% at low output voltages. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2013, Texas Instruments Incorporated TPS65288 SLVSBX3 – MAY 2013 www.ti.com The device incorporates an overvoltage transient protection circuit to minimize voltage overshoot. The OVP feature minimizes the output overshoot by implementing a circuit to compare the FB pin voltage to OVP threshold which is 106% of the internal voltage reference. If the FB pin voltage is greater than the OVTP threshold, the high side MOSFET is disabled preventing current from flowing to the output and minimizing output overshoot. When the FB voltage drops lower than the OVP lower threshold which is 104%, the high side MOSFET is allowed to turn on the next clock cycle. TPS65288 features a supervisor circuit which monitors each buck’s output and the PGOOD pin is asserted once sequencing is done. The PGOOD pin is an open drain o.


TPS65287 TPS65288 TPS65021


@ 2014 :: Datasheetspdf.com :: Semiconductors datasheet search & download site.
(Privacy Policy & Contact)