SCHOTTKY DIODES. BAS70-06 Datasheet

BAS70-06 DIODES. Datasheet pdf. Equivalent

BAS70-06 Datasheet
Recommendation BAS70-06 Datasheet
Part BAS70-06
Description SMALL SIGNAL SCHOTTKY DIODES
Feature BAS70-06; BAR 18 ® BAS70-04 06 SMALL SIGNAL SCHOTTKY DIODES K N.C. A BAR18 A1 K2 K1 A2 BAS70-04 DESCRIPT.
Manufacture STMicroelectronics
Datasheet
Download BAS70-06 Datasheet




STMicroelectronics BAS70-06
BAR 18
®
BAS70-04 06
SMALL SIGNAL SCHOTTKY DIODES
K
N.C.
A
BAR18
A1
K2
K1
A2
BAS70-04
DESCRIPTION
Low turn-on and high breakdown voltage diodes in-
tended for ultrafast switching and UHF detectors in
hybrid micro circuits.
K
A
A1
A2
BAS70-05
SOT-23
(Plastic)
K1
K2
BAS70-06
ABSOLUTE RATINGS (limiting values)
Symbol
Parameter
Value
VRRM
IF
Ptot
Tstg
Tj
Repetitive peak reverse voltage
Continuous forward current
Power dissipation (note 1)
Tamb = 25°C
Maximum storage temperature range
Maximum operating junction temperature *
70
70
250
- 65 to +150
150
TL Maximum temperature for soldering during 10s
260
Note 1: for double diodes, Ptot is the total dissipation of both diodes
* : dPtot <
1 thermal runaway condition for a diode on its own heatsink
dTj
Rth(j a)
Unit
V
mA
mW
°C
°C
°C
THERMAL RESISTANCE
Symbol
Parameter
Rth (j-a) Junction to ambient (*)
(*) Mounted on epoxy board with recommended pad layout.
Value
500
Unit
°C/W
December 2001 - Ed: 3A
1/4



STMicroelectronics BAS70-06
BAR 18 / BAS70-04 06
ELECTRICAL CHARACTERISTICS
STATIC CHARACTERISTICS
Symbol
Test Conditions
VBR
Tj = 25°C IR = 10µA
VF *
Tj = 25°C IF = 1mA
IR **
Tj = 25°C VR = 50V
Pulse test: * tp = 380µs, δ < 2%
** tp = 5 ms, δ < 2%
DYNAMIC CHARACTERISTICS
Symbol
Test Conditions
C
Tj = 25°C VR = 0V F = 1MHz
τ*
Tj = 25°C IF = 5mA Krakauer Method
* Effective carrier life time.
Min.
70
Typ.
Max.
410
200
Unit
V
mV
nA
Min.
Typ.
Max.
2
100
Unit
pF
ps
Fig. 1-1: Forward voltage drop versus forward
current (low level).
IFM(A)
2.0E-2
1.8E-2
1.6E-2
1.4E-2
1.2E-2
1.0E-2
8.0E-3
6.0E-3
4.0E-3
2.0E-3
0.0E+0
0.0 0.2
Tj=100°C
Typical values
Tj=25°C
Maximum values
Tj=25°C
Typical values
VFM(V)
0.4 0.6 0.8 1.0 1.2
Fig. 1-2: Forward voltage drop versus forward
current (high level).
IFM(A)
7E-2
Tj=100°C
Typical values
1E-2
1E-3
Tj=25°C
Maximum values
Tj=25°C
Typical values
VFM(V)
1E-4
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
2/4



STMicroelectronics BAS70-06
BAR 18 / BAS70-04 06
Fig. 2: Reverse leakage current versus reverse
voltage applied (typical values).
IR(µA)
1E+1
1E+0
Tj=100°C
1E-1
Tj=25°C
1E-2
VR(V)
1E-3
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Fig. 3: Reverse leakage current versus junction
temperature (typical values)
IR(µA)
5E+2
VR=70V
1E+2
1E+1
1E+0
1E-1
1E-2
0
Tj(°C)
25
50
75 100 125 150
Fig. 4: Junction capacitance versus reverse voltage
applied (typical values).
C(pF)
2.0
1.0
F=1MHz
Tj=25°C
0.1
1
VR(V)
10
100
Fig. 5: Relative variation of thermal impedance
junction to ambient versus pulse duration (alumine
substrate 10mm*8mm*0.5mm).
Zth(j-a)/Rth(j-a)
1.00
δ = 0.5
0.10
δ = 0.2
δ = 0.1
Single pulse
0.01
1E-3
1E-2
tp(s)
1E-1 1E+0
T
δ=tp/T
1E+1
tp
1E+2
Fig. 6: Thermal resistance junction to ambient ver-
sus copper surface under each lead (Epoxy printed
circuit board FR4, copper thickness: 35µm).
Rth(j-a) (°C/W)
350
300
P=0.25W
250
200
150
0
S(Cu) (mm²)
5 10 15 20 25 30 35 40 45 50
3/4







@ 2014 :: Datasheetspdf.com :: Semiconductors datasheet search & download site (Privacy Policy & Contact)