DatasheetsPDF.com

STPS20L40CT Dataheets PDF



Part Number STPS20L40CT
Manufacturers ST Microelectronics
Logo ST Microelectronics
Description LOW DROP POWER SCHOTTKY RECTIFIER
Datasheet STPS20L40CT DatasheetSTPS20L40CT Datasheet (PDF)

® STPS20L40CF/CW/CT/CFP LOW DROP POWER SCHOTTKY RECTIFIER MAJOR PRODUCTS CHARACTERISTICS A1 IF(AV) VRRM Tj (max) VF (max) FEATURES AND BENEFITS s 2 x 10 A 40 V 150°C 0.5 V A2 K s s s LOW FORWARD VOLTAGE DROP MEANING VERY SMALL CONDUCTION LOSSES LOW DYNAMIC LOSSES AS A RESULT OF THE SCHOTTKY BARRIER INSULATED PACKAGE: ISOWATT220AB, TO-220FPAB Insulating voltage = 200V DC Capacitance = 12pF AVALANCHE CAPABILITY SPECIFIED A2 K A1 A2 A1 K TO-220FPAB STPS20L40CFP TO-220AB STPS20L40CT .

  STPS20L40CT   STPS20L40CT



Document
® STPS20L40CF/CW/CT/CFP LOW DROP POWER SCHOTTKY RECTIFIER MAJOR PRODUCTS CHARACTERISTICS A1 IF(AV) VRRM Tj (max) VF (max) FEATURES AND BENEFITS s 2 x 10 A 40 V 150°C 0.5 V A2 K s s s LOW FORWARD VOLTAGE DROP MEANING VERY SMALL CONDUCTION LOSSES LOW DYNAMIC LOSSES AS A RESULT OF THE SCHOTTKY BARRIER INSULATED PACKAGE: ISOWATT220AB, TO-220FPAB Insulating voltage = 200V DC Capacitance = 12pF AVALANCHE CAPABILITY SPECIFIED A2 K A1 A2 A1 K TO-220FPAB STPS20L40CFP TO-220AB STPS20L40CT DESCRIPTION A2 Dual center tap Schottky rectifiers designed for high frequency switched mode power supplies and DC to DC converters. These devices are intended for use in low voltage, high frequency inverters, free-wheeling and polarity protection applications. ABSOLUTE RATINGS (limiting values, per diode) A1 K A2 K A1 ISOWATT220AB STPS20L40CF TO-247 STPS20L40CW Symbol Parameter Value 40 VRRM Repetitive peak reverse voltage IF(RMS) RMS forward current 30 IF(AV) 10 Average forward TO-220AB Tc = 135°C Per diode 20 current TO-247 δ = 0.5 Per device 10 ISOWATT220AB Tc = 115°C Per diode 20 TO-220FPAB δ = 0.5 Per device IFSM 180 Surge non repetitive forward current tp = 10 ms Sinusoidal IRRM 1 Peak repetitive reverse current tp = 2 µs square F=1kHz IRSM 2 Non repetitive peak reverse current tp = 100 µs square PARM Repetitive peak avalanche power 4000 tp = 1µs Tj = 25°C Tstg 65 to + 150 Storage temperature range Tj 150 Maximum operating junction temperature * dV/dt Critical rate of rise of reverse voltage 10000 dPtot 1 thermal runaway condition for a diode on its own heatsink * : < dTj Rth( j − a ) July 2003 - Ed: 4B Unit V A A A A A A W °C °C V/µs 1/8 STPS20L40CF/CW/CT/CFP THERMAL RESISTANCES Symbol Rth(j-c) Junction to case Parameter ISOWATT220AB TO-220FPAB TO-247 Per diode Total Coupling Per diode Total Coupling Per diode Total Coupling Value 4.5 3.5 2.5 2.2 1.20 0.3 2.2 1.3 0.3 Unit °C/W Rth(j-c) Junction to case °C/W Rth(j-c) Junction to case TO-220AB °C/W When the diodes 1 and 2 are used simultaneously : ∆ Tj(diode 1) = P(diode1) x Rth(j-c)(Per diode) + P(diode 2) x Rth(c) STATIC ELECTRICAL CHARACTERISTICS (per diode) Symbol IR * Parameter Reverse leakage current Forward voltage drop Tests Conditions Tj = 25°C Tj = 100°C Tj = 25°C Tj = 125°C Tj = 25°C Tj = 125°C Pulse test : * tp = 380 µs, δ < 2% Min. Typ. Max. 0.7 Unit mA mA V VR = VRRM 15 IF = 10 A IF = 10 A IF = 20 A IF = 20 A 0.62 0.44 35 0.55 0.5 0.73 0.72 VF * To evaluate the conduction losses use the following equation : P = 0.28 x IF(AV) + 0.022 IF2(RMS) Fig. 1: Average forward power dissipation versus average forward current (per diode). PF(av)(W) 8 7 6 5 4 3 2 1 0 0 2 4 IF(av) (A) 6 8 10 δ=tp/T T Fig. 2: Average forward current versus ambient temperature(δ = 0.5, per diode). IF(av)(A) Rth(j-a)=Rth(j-c) TO-220AB/TO-247 δ = 0.1 δ = 0.05 δ = 0.2 δ = 0.5 δ=1 tp 12 11 10 9 8 7 6 5 4 3 2 1 0 ISOWATT220AB Rth(j-a)=15°C/W T δ=tp/T tp Tamb(°C) 50 75 100 125 150 12 14 0 25 2/8 STPS20L40CF/CW/CT/CFP Fig. 3: Normalized avalanche power derating versus pulse duration. PARM(tp) PARM(1µs) 1 Fig. 4: Normalized avalanche power derating versus junction temperature. PARM(tp) PARM(25°C) 1.2 1 0.1 0.8 0.6 0.01 0.4 0.2 0.001 0.01 0.1 1 tp(µs) 10 100 1000 Tj(°C) 0 0 25 50 75 100 125 150 Fig. 5-1: Non repetitive surge peak forward current versus overload duration (maximum values, per diode, TO-220AB / TO-247). Fig. 5-2: Non repetitive surge peak forward current versus overload duration (maximum values, per diode, ISOWATT220AB, TO-220FPAB). IM(A) 100 90 80 70 60 50 40 30 20 IM 10 0 1E-3 140 120 100 80 60 40 IM(A) Tc=25°C Tc=75°C Tc=125°C t Tc=25°C Tc=50°C Tc=100°C t IM 20 0 1E-3 δ=0.5 t(s) 1E-2 1E-1 1E+0 δ=0.5 t(s) 1E-2 1E-1 1E+0 Fig. 6-1: Relative variation of thermal impedance junction to case versus pulse duration (TO-220AB / TO-247). Zth(j-c)/Rth(j-c) 1.0 0.8 0.6 0.4 0.2 Single pulse δ = 0.5 Fig. 6-2: Relative variation of thermal impedance junction to case versus pulse duration (ISOWATT220AB, TO-220FPAB). Zth(j-c)/Rth(j-c) 1.0 0.8 0.6 0.4 T δ = 0.5 δ = 0.2 δ = 0.1 δ = 0.2 δ = 0.1 T 0.2 tp(s) 0.0 1E-3 1E-2 1E-1 δ=tp/T tp Single pulse tp(s) δ=tp/T tp 1E+0 0.0 1E-3 1E-2 1E-1 1E+0 1E+1 3/8 STPS20L40CF/CW/CT Fig. 7: Reverse leakage current versus reverse voltage applied (typical values, per diode). Fig. 8: Junction capacitance versus reverse voltage applied (typical values, per diode). C(pF) 2000 Tj=150°C Tj=125°C 2E+2 1E+2 1E+1 1E+0 1E-1 IR(mA) 1000 Tj=75°C F=1MHz Tj=25°C Tj=25°C 1E-2 VR(V) 1E-3 0 5 10 15 20 25 30 35 40 100 VR(V) 1 2 5 10 20 50 Fig. 9: Forward voltage drop versus forward current (maximum values) (per diode). 100.0 IFM(A) Typical values Tj=150°C 10.0 Tj=125°C Tj=25°C 1.0 Tj=75°C 0.1 0.0 VFM(V) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 4/8 STPS20L40CF/CW/CT/CFP PACKAGE MECHANICAL DATA ISOWATT220AB DIMENSIONS REF. A B D E F F1 F2 G G1 H L2 L3 L4 L6 L7 Diam Millimeter.


STPS20L40CW STPS20L40CT STPS20L45CF


@ 2014 :: Datasheetspdf.com :: Semiconductors datasheet search & download site.
(Privacy Policy & Contact)