DatasheetsPDF.com

LPC1774 Dataheets PDF



Part Number LPC1774
Manufacturers NXP
Logo NXP
Description (LPC177x / LPC178x) 32-bit ARM Cortex-M3 microcontroller
Datasheet LPC1774 DatasheetLPC1774 Datasheet (PDF)

LPC178x/7x 32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and 96 kB SRAM; USB Device/Host/OTG; Ethernet; LCD; EMC Rev. 4.1 — 15 November 2012 Product data sheet 1. General description The LPC178x/7x is an ARM Cortex-M3 based microcontroller for embedded applications requiring a high level of integration and low power dissipation. The Cortex-M3 is a next generation core that offers better performance than the ARM7 at the same clock rate and other system enhancements such as modernized .

  LPC1774   LPC1774


Document
LPC178x/7x 32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and 96 kB SRAM; USB Device/Host/OTG; Ethernet; LCD; EMC Rev. 4.1 — 15 November 2012 Product data sheet 1. General description The LPC178x/7x is an ARM Cortex-M3 based microcontroller for embedded applications requiring a high level of integration and low power dissipation. The Cortex-M3 is a next generation core that offers better performance than the ARM7 at the same clock rate and other system enhancements such as modernized debug features and a higher level of support block integration. The Cortex-M3 CPU incorporates a 3-stage pipeline and has a Harvard architecture with separate local instruction and data buses, as well as a third bus with slightly lower performance for peripherals. The Cortex-M3 CPU also includes an internal prefetch unit that supports speculative branches. The LPC178x/7x adds a specialized flash memory accelerator to accomplish optimal performance when executing code from flash. The LPC178x/7x operates at up to 120 MHz CPU frequency. The peripheral complement of the LPC178x/7x includes up to 512 kB of flash program memory, up to 96 kB of SRAM data memory, up to 4032 byte of EEPROM data memory, External Memory Controller (EMC), LCD (LPC178x only), Ethernet, USB Device/Host/OTG, a General Purpose DMA controller, five UARTs, three SSP controllers, three I2C-bus interfaces, one eight-channel, 12-bit ADC, a 10-bit DAC, a Quadrature Encoder Interface, four general purpose timers, two general purpose PWMs with six outputs each and one motor control PWM, an ultra-low power RTC with separate battery supply and event recorder, a windowed watchdog timer, a CRC calculation engine, up to 165 general purpose I/O pins, and more. The pinout of LPC178x/7x is intended to allow pin function compatibility with the LPC24xx and LPC23xx. www.DataSheet.net/ 2. Features and benefits  Functional replacement for the LPC23xx and LPC24xx family devices.  System:  ARM Cortex-M3 processor, running at frequencies of up to 120 MHz. A Memory Protection Unit (MPU) supporting eight regions is included.  ARM Cortex-M3 built-in Nested Vectored Interrupt Controller (NVIC).  Multilayer AHB matrix interconnect provides a separate bus for each AHB master. AHB masters include the CPU,USB, Ethernet, and the General Purpose DMA controller. This interconnect provides communication with no arbitration delays unless two masters attempt to access the same slave at the same time.  Split APB bus allows for higher throughput with fewer stalls between the CPU and DMA. A single level of write buffering allows the CPU to continue without waiting for completion of APB writes if the APB was not already busy. Datasheet pdf - http://www.DataSheet4U.co.kr/ NXP Semiconductors LPC178x/7x 32-bit ARM Cortex-M3 microcontroller       Cortex-M3 system tick timer, including an external clock input option.  Standard JTAG test/debug interface as well as Serial Wire Debug and Serial WireTrace Port options.  Embedded Trace Macrocell (ETM) module supports real-time trace.  Boundary scan for simplified board testing.  Non-maskable Interrupt (NMI) input. Memory:  Up to 512 kB on-chip flash program memory with In-System Programming (ISP) and In-Application Programming (IAP) capabilities. The combination of an enhanced flash memory accelerator and location of the flash memory on the CPU local code/data bus provides high code performance from flash.  Up to 96 kB on-chip SRAM includes: 64 kB of main SRAM on the CPU with local code/data bus for high-performance CPU access. Two 16 kB peripheral SRAM blocks with separate access paths for higher throughput. These SRAM blocks may be used for DMA memory as well as for general purpose instruction and data storage.  Up to 4032 byte on-chip EEPROM. LCD controller, supporting both Super-Twisted Nematic (STN) and Thin-Film Transistors (TFT) displays.  Dedicated DMA controller.  Selectable display resolution (up to 1024  768 pixels).  Supports up to 24-bit true-color mode. External Memory Controller (EMC) provides support for asynchronous static memory devices such as RAM, ROM and flash, as well as dynamic memories such as single data rate SDRAM with an SDRAM clock of up to 80 MHz. Eight channel General Purpose DMA controller (GPDMA) on the AHB multilayer matrix that can be used with the SSP, I2S, UART, CRC engine, Analog-to-Digital and Digital-to-Analog converter peripherals, timer match signals, GPIO, and for memory-to-memory transfers. Serial interfaces:  Ethernet MAC with MII/RMII interface and associated DMA controller. These functions reside on an independent AHB.  USB 2.0 full-speed dual-port device/host/OTG controller with on-chip PHY and associated DMA controller.  Five UARTs with fractional baud rate generation, internal FIFO, DMA support, and RS-485/EIA-485 support. One UART (UART1) has full modem control I/O, and one UART (USART4) supports IrDA, synchronous mode, and a smart card mode conforming to ISO7816-3..


LPC1776 LPC1774 LPC1857FET256


@ 2014 :: Datasheetspdf.com :: Semiconductors datasheet search & download site.
(Privacy Policy & Contact)