DatasheetsPDF.com

HAT2020R Dataheets PDF



Part Number HAT2020R
Manufacturers Hitachi Semiconductor
Logo Hitachi Semiconductor
Description Silicon N-Channel Power MOSFET
Datasheet HAT2020R DatasheetHAT2020R Datasheet (PDF)

HAT2020R Silicon N Channel Power MOS FET High Speed Power Switching ADE-208-439 J (Z) 11th. Edition February 1999 Features • • • • Low on-resistance Capable of 4 V gate drive Low drive current High density mounting Outline SOP–8 8 5 7 6 5 6 7 8 D D D D 3 1 2 4 4 G 1, 2, 3 Source 4 Gate 5, 6, 7, 8 Drain S S S 1 2 3 HAT2020R Absolute Maximum Ratings (Ta = 25°C) Item Drain to source voltage Gate to source voltage Drain current Drain peak current Body-drain diode reverse drain current Channe.

  HAT2020R   HAT2020R



Document
HAT2020R Silicon N Channel Power MOS FET High Speed Power Switching ADE-208-439 J (Z) 11th. Edition February 1999 Features • • • • Low on-resistance Capable of 4 V gate drive Low drive current High density mounting Outline SOP–8 8 5 7 6 5 6 7 8 D D D D 3 1 2 4 4 G 1, 2, 3 Source 4 Gate 5, 6, 7, 8 Drain S S S 1 2 3 HAT2020R Absolute Maximum Ratings (Ta = 25°C) Item Drain to source voltage Gate to source voltage Drain current Drain peak current Body-drain diode reverse drain current Channel dissipation Channel temperature Storage temperature Note: Symbol VDSS VGSS ID I D(pulse) I DR Pch Tch Tstg Note2 Note1 Ratings 30 ± 20 8 64 8 2.5 150 – 55 to + 150 Unit V V A A A W °C °C 1. PW ≤ 10 µs, duty cycle ≤ 1 % 2. When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW≤ 10s Electrical Characteristics (Ta = 25°C) Item Symbol Min 30 ± 20 — — 1.0 — — 7 — — — — — — — — — Typ — — — — — 0.020 0.030 11 780 560 240 35 240 50 100 0.8 55 Max — — ± 10 10 2.0 0.028 0.050 — — — — — — — — 1.3 — Unit V V µA µA V Ω Ω S pF pF pF ns ns ns ns V ns IF = 8 A, VGS = 0 Note3 IF = 8 A, VGS = 0 diF/ dt = 20 A/µs Test Conditions I D = 10 mA, VGS = 0 I G = ± 100 µA, VDS = 0 VGS = ± 16 V, VDS = 0 VDS = 30 V, VGS = 0 VDS = 10 V, I D = 1m A I D = 4 A, VGS = 10 V Note3 I D = 4 A, VGS = 4 V Note3 I D = 4 A, VDS = 10 V Note3 VDS = 10 V VGS = 0 f = 1MHz VGS = 4 V, ID = 4 A VDD ≅ 10 V Drain to source breakdown voltage V(BR)DSS Gate to source breakdown voltage V(BR)GSS Gate to source leak current Zero gate voltege drain current Gate to source cutoff voltage Static drain to source on state resistance Forward transfer admittance Input capacitance Output capacitance Reverse transfer capacitance Turn-on delay time Rise time Turn-off delay time Fall time Body–drain diode forward voltage Body–drain diode reverse recovery time Note: 3. Pulse test I GSS I DSS VGS(off) RDS(on) RDS(on) |yfs| Ciss Coss Crss t d(on) tr t d(off) tf VDF t rr 2 HAT2020R Main Characteristics Power vs. Temperature Derating 4.0 Pch (W) I D (A) 100 30 10 3 Maximum Safe Operation Area 10 µs 100 µs Test Condition : When using the glass epoxy board (FR4 40x40x1.6 mm), PW < 10 s 3.0 PW DC Op er at 1 m = s 10 m s Channel Dissipation Drain Current ion 2.0 1 (P W 1.0 Operation in 0.3 this area is limited by R DS(on) 0.1 < Note 10 4 s) 0 50 100 150 Ta (°C) 200 Ambient Temperature 0.03 Ta = 25 °C 1 shot Pulse 0.01 0.1 0.3 1 3 10 30 100 Drain to Source Voltage V DS (V) Note 4 : When using the glass epoxy board (FR4 40x40x1.6 mm) Typical Output Characteristics 20 10V 6V 5V 4.5 V 4V 3V Typical Transfer Characteristics 20 V DS = 10 V Pulse Test 3.5 V I D (A) Pulse Test 12 ID Drain Current (A) 16 16 12 25°C Tc = 75°C –25°C 4 Drain Current 8 8 4 VGS = 2.5 V 0 2 4 6 Drain to Source Voltage 8 10 V DS (V) 0 1 2 3 Gate to Source Voltage 5 4 V GS (V) 3 HAT2020R Drain to Source Saturation Voltage vs. Gate to Source Voltage Static Drain to Source on State Resistance vs. Drain Current 0.5 Pulse Test 0.2 0.1 V DS(on) (V) Pulse Test 0.08 Drain to Source Voltage 0.06 ID=2A 0.04 1A 0.5 A 0 2 4 6 Gate to Source Voltage 8 V GS (V) 10 Drain to Source On State Resistance R DS(on) ( Ω ) 0.10 0.05 0.02 VGS = 4 V 10 V 0.02 0.01 0.005 0.2 0.5 1 2 Drain Current 5 10 I D (A) 20 Static Drain to Source on State Resistance R DS(on) ( Ω) Pulse Test 0.08 Forward Transfer Admittance |yfs| (S) Static Drain to Source on State Resistance vs. Temperature 0.10 50 Forward Transfer Admittance vs. Drain Current 20 10 5 2 1 0.5 0.2 Tc = –25 °C 25 °C 0.06 I D = 0.5 A, 1 A, 2 A 0.04 V GS = 4 V 0.5 A, 1 A, 2 A 10 V 0 –40 0 40 80 120 160 Case Temperature Tc (°C) 75 °C 0.02 V DS = 10 V Pulse Test 0.5 1 2 5 10 20 Drain Current I D (A) 4 HAT2020R Body–Drain Diode Reverse Recovery Time 10000 3000 1000 300 100 30 10 0 10 20 30 40 50 Drain to Source Voltage V DS (V) Ciss Coss Crss Typical Capacitance vs. Drain to Source Voltage VGS = 0 f = 1 MHz 500 Reverse Recovery Time trr (ns) 100 50 20 10 5 0.2 di/dt = 20 A/µs V GS = 0, Ta = 25°C 0.5 1 2 5 10 20 Reverse Drain Current I DR (A) Capacitance C (pF) 200 Dynamic Input Characteristics V DS (V) V GS (V) 50 I D= 8 A V DD = 5 V 10 V 25 V V DS V GS 20 1000 500 Switching Characteristics Switching Time t (ns) 40 16 Drain to Source Voltage 30 12 Gate to Source Voltage 200 100 50 tr tf t d(off) t d(on) V GS = 4 V, V DD = 10 V PW = 3 µs, duty < 1 % 0.5 1 2 Drain Current 5 10 I D (A) 20 20 8 10 V DD = 25 V 10 V 5V 8 16 24 32 Gate Charge Qg (nc) 4 0 40 20 10 0.2 0 5 HAT2020R Reverse Drain Current vs. Souece to Drain Voltage 20 Reverse Drain Current I DR (A) Pulse Test 16 12 V GS = 0 V 5V 8 4 0 0.4 0.8 1.2 1.6 2.0 Source to Drain Voltage V SD (V) Normalized Transient Thermal Impedance vs. Pulse Width 10 Normalized Transient Thermal Impedance γ s (t) 1 D=1 0.5 0.1 0.2 0.1 0.05 0.02 0.01 e 0.01 θ ch – f(t) = γ s (t) • θ ch – f θ ch – f = 83.3 °C/W, Ta = 25 °C When u.


HAT2019R HAT2020R HAT2022R


@ 2014 :: Datasheetspdf.com :: Semiconductors datasheet search & download site.
(Privacy Policy & Contact)