MOSFET. IRF661TRPbF Datasheet

IRF661TRPbF MOSFET. Datasheet pdf. Equivalent

Part IRF661TRPbF
Description MOSFET
Feature RoHs Compliant Lead-Free (Qualified up to 260°C Reflow) Application Specific MOSFETs Ideal for CPU C.
Manufacture International Rectifier
Datasheet
Download IRF661TRPbF Datasheet



IRF661TRPbF
RoHs Compliant
Lead-Free (Qualified up to 260°C Reflow)
Application Specific MOSFETs
Ideal for CPU Core DC-DC Converters
Low Conduction Losses
High Cdv/dt Immunity
Low Profile (<0.7mm)
Dual Sided Cooling Compatible
Compatible with existing Surface Mount Techniques
PD - 97215
IRF6612PbF
IRF661TRPbF
DirectFETPower MOSFET
Typical values (unless otherwise specified)
VDSS
VGS
RDS(on)
RDS(on)
30V max ±20V max 2.5m@ 10V 3.4m@ 4.5V
Qg tot Qgd
Qgs2
Qrr
Qoss Vgs(th)
30nC 10nC 2.9nC 8.1nC 18nC 1.8V
Applicable DirectFET Package/Layout Pad (see p.8,9 for details)
MX
DirectFETISOMETRIC
SQ SX ST
MQ MX MT
Description
The IRF6612PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packag-
ing to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The
DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and
vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing
methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems,
improving previous best thermal resistance by 80%.
The IRF6612PbF balances industry leading on-state resistance while minimizing gate charge along with ultra low package
inductance to reduce both conduction and switching losses. The reduced losses make this product ideal for high frequency/
high efficiency DC-DC converters that power high current loads such as the latest generation of microprocessors. The
IRF6612PbF has been optimized for parameters that are critical in synchronous buck converter’s SyncFET sockets.
Absolute Maximum Ratings
Parameter
VDS Drain-to-Source Voltage
VGS
ID @ TC = 25°C
ID @ TA = 25°C
ID @ TA = 70°C
IDM
EAS
IAR
10
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
9 ID = 24A
8
7
6 TJ = 125°C
5
4
3
2 TJ = 25°C
1
0
2 3 4 5 6 7 8 9 10
Max.
30
±20
136
24
19
190
37
19
6.0
5.0 ID= 19A
4.0
VDS = 24V
VDS = 15V
3.0
2.0
1.0
0.0
0
10 20
Units
V
A
mJ
A
30 40
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate-to-Source Voltage
Notes:
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
QG Total Gate Charge (nC)
Fig 2. Total Gate Charge vs. Gate-to-Source Voltage
TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 0.20mH, RG = 25, IAS = 19A.
1
05/29/06



IRF661TRPbF
IRF6612PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
BVDSS
∆ΒVDSS/TJ
RDS(on)
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
30
–––
–––
–––
VGS(th)
VGS(th)/TJ
IDSS
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
1.35
–––
–––
–––
IGSS Gate-to-Source Forward Leakage
–––
Gate-to-Source Reverse Leakage
–––
gfs Forward Transconductance
96
Qg
Qgs1
Qgs2
Qgd
Qgodr
Qsw
Qoss
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
Output Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Diode Characteristics
Parameter
IS Continuous Source Current
(Body Diode)
ISM Pulsed Source Current
(Body Diode)
VSD Diode Forward Voltage
trr Reverse Recovery Time
Qrr Reverse Recovery Charge
Min.
–––
–––
–––
–––
–––
Typ.
–––
24
2.5
3.4
1.8
-5.6
–––
–––
–––
–––
–––
30
8.5
2.9
10
8.6
13
18
15
52
21
4.8
3970
780
360
Typ.
–––
–––
–––
19
8.1
Max.
–––
–––
3.3
4.4
2.25
–––
1.0
100
100
-100
–––
45
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Units
V
mV/°C
m
V
mV/°C
µA
nA
S
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 24A
VGS = 4.5V, ID = 19A
VDS = VGS, ID = 250µA
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VDS = 15V, ID = 19A
VDS = 15V
nC VGS = 4.5V
ID = 19A
See Fig. 14
nC VDS = 16V, VGS = 0V
VDD = 16V, VGS = 4.5V
ID = 19A
ns Clamped Inductive Load
See Fig. 15 & 16
VGS = 0V
pF VDS = 15V
ƒ = 1.0MHz
Max.
110
190
1.0
29
12
Units
A
V
ns
nC
Conditions
MOSFET symbol
D
showing the
integral reverse
G
p-n junction diode.
S
TJ = 25°C, IS = 19A, VGS = 0V
TJ = 25°C, IF = 19A
di/dt = 100A/µs See Fig. 17
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Pulse width 400µs; duty cycle 2%.
2
www.irf.com





@ 2014 :: Datasheetspdf.com :: Semiconductors datasheet search & download site (Privacy Policy & Contact)