Power MOSFET. IRF6646PbF Datasheet

IRF6646PbF MOSFET. Datasheet pdf. Equivalent

Part IRF6646PbF
Description DirectFET Power MOSFET
Feature PD - 97224A IRF6646PbF IRF6646TRPbF l RoHs Compliant  l Lead-Free (Qualified up to 260°C Reflow) .
Manufacture International Rectifier
Datasheet
Download IRF6646PbF Datasheet

PD - 97224A IRF6646PbF IRF6646TRPbF l RoHs Compliant  l L IRF6646PbF Datasheet
Recommendation Recommendation Datasheet IRF6646PbF Datasheet





IRF6646PbF
PD - 97224A
IRF6646PbF
IRF6646TRPbF
l RoHs Compliant 
l Lead-Free (Qualified up to 260°C Reflow)
l Application Specific MOSFETs
l Ideal for High Performance Isolated Converter
Primary Switch Socket
l Optimized for Synchronous Rectification
l Low Conduction Losses
l High Cdv/dt Immunity
l Low Profile (<0.7mm)
l Dual Sided Cooling Compatible 
l Compatible with existing Surface Mount Techniques 
DirectFET™ Power MOSFET ‚
VDSS
80V max
Typical values (unless otherwise specified)
VGS
RDS(on)
±20V max
7.6m@ 10V
Qg tot Qgd Qgs2 Qrr Qoss Vgs(th)
36nC 12nC 2.0nC 48nC 18nC 3.8V
MN
DirectFET™ ISOMETRIC
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ SX ST
MQ MX MT MN
Description
The IRF6646PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve
the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual
sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6646PbF is optimized for primary side bridge topologies in isolated DC-DC applications, for 48V(±10%) or 36V to 60V ETSI input
voltage range systems, and is also ideal for secondary side synchronous rectification in regulated isolated DC-DC topologies. The reduced
total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for
system reliability improvements, and makes this device ideal for high performance isolated DC-DC converters.
Absolute Maximum Ratings
Parameter
VDS Drain-to-Source Voltage
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
Gate-to-Source Voltage
eContinuous Drain Current, VGS @ 10V
eContinuous Drain Current, VGS @ 10V
fContinuous Drain Current, VGS @ 10V
gPulsed Drain Current
hSingle Pulse Avalanche Energy
ÃgAvalanche Current
Max.
80
±20
12
9.6
68
96
230
7.2
Units
V
A
mJ
A
0.05
0.04
ID = 7.2A
0.03
0.02
0.01
0
4
TJ = 25°C
68
TJ = 125°C
10 12 14 16
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
12.0
10.0
8.0
ID= 7.2A
VDS= 40V
VDS= 16V
6.0
4.0
2.0
0.0
0
Fig 2.
10 20 30 40
QG Total Gate Charge (nC)
Typical Total Gate Charge vs. Gate-to-Source
Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 8.8mH, RG = 25, IAS = 7.2A.
1
08/24/06



IRF6646PbF
IRF6646PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
BVDSS
∆ΒVDSS/TJ
RDS(on)
VGS(th)
VGS(th)/TJ
IDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
80
–––
–––
3.0
–––
–––
–––
IGSS
Gate-to-Source Forward Leakage
–––
Gate-to-Source Reverse Leakage
–––
gfs Forward Transconductance
17
Qg Total Gate Charge
Qgs1 Pre-Vth Gate-to-Source Charge
Qgs2 Post-Vth Gate-to-Source Charge
Qgd Gate-to-Drain Charge
Qgodr
Gate Charge Overdrive
Qsw Switch Charge (Qgs2 + Qgd)
Qoss Output Charge
RG Gate Resistance
td(on)
Turn-On Delay Time
tr Rise Time
td(off)
Turn-Off Delay Time
tf Fall Time
Ciss Input Capacitance
Coss Output Capacitance
Crss Reverse Transfer Capacitance
Coss Output Capacitance
Coss Output Capacitance
Diode Characteristics
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Parameter
Min.
IS Continuous Source Current –––
(Body Diode)
ISM Pulsed Source Current
(Body Diode) g
VSD Diode Forward Voltage
trr Reverse Recovery Time
Qrr Reverse Recovery Charge
–––
–––
–––
–––
Typ.
–––
0.10
7.6
–––
-11
–––
–––
–––
–––
–––
36
7.6
2.0
12
14
14
18
1.0
17
20
31
12
2060
480
120
2180
310
Typ.
–––
–––
–––
36
48
Max. Units
Conditions
––– V VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA
9.5 mVGS = 10V, ID = 12A i
4.9 V VDS = VGS, ID = 150µA
––– mV/°C
20
250
100
-100
–––
µA VDS = 80V, VGS = 0V
VDS = 64V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
S VDS = 10V, ID = 7.2A
50
––– VDS = 40V
––– nC VGS = 10V
ID = 7.2A
––– See Fig. 15
–––
––– nC VDS = 16V, VGS = 0V
–––
––– VDD = 40V, VGS = 10V i
––– ID = 7.2A
––– ns RG=6.2
––– See Fig. 16 & 17
––– VGS = 0V
––– pF VDS = 25V
––– ƒ = 1.0MHz
––– VGS = 0V, VDS = 1.0V, f=1.0MHz
––– VGS = 0V, VDS = 64V, f=1.0MHz
Max. Units
Conditions
2.5j
MOSFET symbol
A showing the
96 integral reverse
p-n junction diode.
1.3 V TJ = 25°C, IS = 7.2A, VGS = 0V i
54 ns TJ = 25°C, IF = 7.2A, VDD = 40V
72 nC di/dt = 100A/µs i See Fig. 18
Notes:
… Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width 400µs; duty cycle 2%.
ˆ Thermally limited and used Rθja to calculate.
2
www.irf.com





@ 2014 :: Datasheetspdf.com :: Semiconductors datasheet search & download site (Privacy Policy & Contact)