Power MOSFET. IRF6702M2DTR1PbF Datasheet

IRF6702M2DTR1PbF MOSFET. Datasheet pdf. Equivalent

IRF6702M2DTR1PbF Datasheet
Recommendation IRF6702M2DTR1PbF Datasheet
Part IRF6702M2DTR1PbF
Description Power MOSFET
Feature IRF6702M2DTR1PbF; Applications l Dual Common Drain Control MOSFETs for Multiphase DC-DC Converters Features l Replaces.
Manufacture International Rectifier
Datasheet
Download IRF6702M2DTR1PbF Datasheet




International Rectifier IRF6702M2DTR1PbF
Applications
l Dual Common Drain Control MOSFETs for
Multiphase DC-DC Converters
Features
l Replaces Two discrete high side MOSFETs
l Optimized for High Frequency Switching
l Low Profile (<0.7 mm)
l Dual Sided Cooling Compatible
l Ultra Low Package Inductance
l Compatible with existing Surface Mount
Techniques
l RoHS Compliant and Halogen Free
l 100% Rg tested
PD - 97540
IRF6702M2DTRPbF
IRF6702M2DTR1PbF
DirectFET™ Power MOSFET ‚
Typical values (unless otherwise specified)
VDSS
VGS
RDS(on)
RDS(on)
30V max ±20V max 5.2m@ 10V 8.6m@ 4.5V
Qg tot Qgd
Qgs2
Qrr
Qoss Vgs(th)
9.4nC 3.3nC 1.2nC 17nC 6.3nC 1.8V
G1
S1
G2
S2
Applicable DirectFET Outline and Substrate Outline 
DirectFET™ ISOMETRIC
S1 S2 SB
M2 M4 MA L4 L6 L8
Description
The IRF6702M2DPbF combines two MOSFET switches optimized for high side applications into a single medium can DirectFET package.
The switches have low gate resistance and low charge along with ultra low package inductance providing significant reduction in switching
losses. The reduced losses make this product ideal for high efficiency multiphase DC-DC converters that power the latest generation of
processors operating at higher frequencies.
The IRF6702M2DPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to
achieve the highest power density for two MOSFETs in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET
package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or
convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The
DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by
80%.
Absolute Maximum Ratings (each die operating consecutively)
Parameter
Max.
Units
VDS Drain-to-Source Voltage
30 V
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
Gate-to-Source Voltage
eContinuous Drain Current, VGS @ 10V
eContinuous Drain Current, VGS @ 10V
fContinuous Drain Current, VGS @ 10V
gPulsed Drain Current
hSingle Pulse Avalanche Energy
ÃgAvalanche Current
±20
15
13 A
47
130
71 mJ
12 A
25 14.0
20
ID = 15A
12.0 ID= 12A
VDS= 24V
10.0
VDS= 15V
15 8.0
10
TJ = 125°C
6.0
5
TJ = 25°C
0
2 4 6 8 10 12 14 16 18 20
4.0
2.0
0.0
0
5 10 15 20 25
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.99mH, RG = 25, IAS = 12A.
1
07/21/2010



International Rectifier IRF6702M2DTR1PbF
IRF6702M2DTR/TR1PbF
Static @ TJ = 25°C (each die unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
BVDSS
∆ΒVDSS/TJ
RDS(on)
VGS(th)
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
30 ––– ––– V VGS = 0V, ID = 250µA
––– 20 ––– mV/°C Reference to 25°C, ID = 1mA
i––– 5.2 6.6 mVGS = 10V, ID = 15A
i––– 8.6 11.3
VGS = 4.5V, ID = 12A
1.35 1.8 2.35 V VDS = VGS, ID = 25µA
VGS(th)/TJ
IDSS
IGSS
gfs
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
––– -7.2 ––– mV/°C
––– ––– 1.0 µA VDS = 24V, VGS = 0V
––– ––– 150
VDS = 24V, VGS = 0V, TJ = 125°C
––– ––– 100 nA VGS = 20V
––– ––– -100
VGS = -20V
34 ––– ––– S VDS = 15V, ID =12A
Qg Total Gate Charge
Qgs1 Pre-Vth Gate-to-Source Charge
Qgs2 Post-Vth Gate-to-Source Charge
Qgd Gate-to-Drain Charge
Qgodr
Gate Charge Overdrive
Qsw Switch Charge (Qgs2 + Qgd)
Qoss Output Charge
RG Gate Resistance
td(on)
Turn-On Delay Time
tr Rise Time
td(off)
Turn-Off Delay Time
tf Fall Time
Ciss Input Capacitance
Coss Output Capacitance
Crss Reverse Transfer Capacitance
Diode Characteristics
––– 9.4 14
––– 2.2 –––
––– 1.2 –––
––– 3.3 –––
––– 2.7 –––
––– 4.5 –––
––– 6.3 –––
––– 0.4 –––
––– 14 –––
––– 41 –––
––– 15 –––
––– 20 –––
––– 1380 –––
––– 290 –––
––– 120 –––
VDS = 15V
nC VGS = 4.5V
ID = 12A
See Fig. 2
nC VDS = 16V, VGS = 0V
Ãi
VDD = 15V, VGS = 4.5V
ID = 12A
ns RG= 6.8
VGS = 0V
pF VDS = 15V
ƒ = 1.0MHz
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
––– ––– 32
MOSFET symbol
(Body Diode)
A showing the
ISM Pulsed Source Current
Ãg(Body Diode)
VSD Diode Forward Voltage
trr Reverse Recovery Time
Qrr Reverse Recovery Charge
––– ––– 130
integral reverse
––– ––– 1.0
p-n junction diode.
iV TJ = 25°C, IS = 12A, VGS = 0V
i––– 16 24 ns TJ = 25°C, IF =12A
––– 17 26 nC di/dt = 370A/µs
Notes:
… Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width 400µs; duty cycle 2%.
2
www.irf.com



International Rectifier IRF6702M2DTR1PbF
IRF6702M2DTR/TR1PbF
Absolute Maximum Ratings (each die operating consecutively)
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
ePower Dissipation
ePower Dissipation
fPower Dissipation
Parameter
Peak Soldering Temperature
Operating Junction and
Max.
2.7
1.9
25
270
-55 to + 175
TSTG
Storage Temperature Range
Thermal Resistance (each die operating consecutively)
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Parameter
elJunction-to-Ambient
jlJunction-to-Ambient
klJunction-to-Ambient
flJunction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
Typ.
–––
12.5
20
–––
1.0
0.018
Max.
56
–––
–––
5.9
–––
Units
W
°C
Units
°C/W
W/°C
100
D = 0.50
10 0.20
0.10
0.05
1 0.02
0.01
0.1
0.01
SINGLE PULSE
( THERMAL RESPONSE )
τJ τJ
τ1 τ1
R 1R 1
Ci= τi/Ri
Ci= τi/Ri
R2R2
τ2 τ2
R 3R 3
τ3 τ3
0.001
1E-006
1E-005
0.0001
0.001
0.01
t1 , Rectangular Pulse Duration (sec)
R4R4 Ri (°C/W) τi (sec)
τ4 τ4
τAτA
3.1440
23.201
19.855
0.000878
0.291662
1.970485
9.7220 0.027200
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.1 1 10
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 
Notes:
ƒ Surface mounted on 1 in. square Cu board, steady state.
‰ Mounted on minimum footprint full size board with metalized
„ TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink.
ˆ Used double sided cooling, mounting pad with large heatsink.
Š Rθ is measured at TJ of approximately 90°C.
ƒ Surface mounted on 1 in. square Cu
board (still air).
www.irf.com
‰ Mounted on minimum footprint full size board with metalized
back and with small clip heatsink. (still air)
3







@ 2014 :: Datasheetspdf.com :: Semiconductors datasheet search & download site (Privacy Policy & Contact)